Artu̅ras Polita*, Ru̅ta Bagdonaitė, Arun Prabha Shivabalan and Gintaras Valinčius,
{"title":"辛伐他汀和普伐他汀对模型脂质双分子层和活细胞质膜生物物理特性的影响","authors":"Artu̅ras Polita*, Ru̅ta Bagdonaitė, Arun Prabha Shivabalan and Gintaras Valinčius, ","doi":"10.1021/acsbiomaterials.4c0091110.1021/acsbiomaterials.4c00911","DOIUrl":null,"url":null,"abstract":"<p >Statins are among the most widely used drugs for the inhibition of cholesterol biosynthesis, prevention of cardiovascular diseases, and treatment of hypercholesterolemia. Additionally, statins also exhibit cholesterol-independent benefits in various diseases, including neuroprotective properties in Alzheimer’s disease, anti-inflammatory effects in coronary artery disease, and antiproliferative activities in cancer, which likely result from the statins’ interaction and alteration of lipid bilayers. However, the membrane-modulatory effects of statins and the mechanisms by which statins alter lipid bilayers remain poorly understood. In this work, we explore the membrane-modulating effects of statins on model lipid bilayers and live cells. Through the use of fluorescence lifetime imaging microscopy (FLIM) combined with viscosity-sensitive environmental probes, we demonstrate that hydrophobic, but not hydrophilic, statins are capable of changing the microviscosity and lipid order in model and live cell membranes. Furthermore, we show that hydrophobic simvastatin is capable of forming nanoscale cholesterol-rich domains and homogenizing the cholesterol concentrations in lipid bilayers. Our results provide a mechanistic framework for understanding the bimodal effects of simvastatin on the lipid order and the lateral organization of cholesterol in lipid bilayers. Finally, we demonstrate that simvastatin temporarily decreases the microviscosity of live cell plasma membranes, making them more permeable and increasing the level of intracellular chemotherapeutic drug accumulation.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsbiomaterials.4c00911","citationCount":"0","resultStr":"{\"title\":\"Influence of Simvastatin and Pravastatin on the Biophysical Properties of Model Lipid Bilayers and Plasma Membranes of Live Cells\",\"authors\":\"Artu̅ras Polita*, Ru̅ta Bagdonaitė, Arun Prabha Shivabalan and Gintaras Valinčius, \",\"doi\":\"10.1021/acsbiomaterials.4c0091110.1021/acsbiomaterials.4c00911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Statins are among the most widely used drugs for the inhibition of cholesterol biosynthesis, prevention of cardiovascular diseases, and treatment of hypercholesterolemia. Additionally, statins also exhibit cholesterol-independent benefits in various diseases, including neuroprotective properties in Alzheimer’s disease, anti-inflammatory effects in coronary artery disease, and antiproliferative activities in cancer, which likely result from the statins’ interaction and alteration of lipid bilayers. However, the membrane-modulatory effects of statins and the mechanisms by which statins alter lipid bilayers remain poorly understood. In this work, we explore the membrane-modulating effects of statins on model lipid bilayers and live cells. Through the use of fluorescence lifetime imaging microscopy (FLIM) combined with viscosity-sensitive environmental probes, we demonstrate that hydrophobic, but not hydrophilic, statins are capable of changing the microviscosity and lipid order in model and live cell membranes. Furthermore, we show that hydrophobic simvastatin is capable of forming nanoscale cholesterol-rich domains and homogenizing the cholesterol concentrations in lipid bilayers. Our results provide a mechanistic framework for understanding the bimodal effects of simvastatin on the lipid order and the lateral organization of cholesterol in lipid bilayers. Finally, we demonstrate that simvastatin temporarily decreases the microviscosity of live cell plasma membranes, making them more permeable and increasing the level of intracellular chemotherapeutic drug accumulation.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsbiomaterials.4c00911\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsbiomaterials.4c00911\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomaterials.4c00911","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Influence of Simvastatin and Pravastatin on the Biophysical Properties of Model Lipid Bilayers and Plasma Membranes of Live Cells
Statins are among the most widely used drugs for the inhibition of cholesterol biosynthesis, prevention of cardiovascular diseases, and treatment of hypercholesterolemia. Additionally, statins also exhibit cholesterol-independent benefits in various diseases, including neuroprotective properties in Alzheimer’s disease, anti-inflammatory effects in coronary artery disease, and antiproliferative activities in cancer, which likely result from the statins’ interaction and alteration of lipid bilayers. However, the membrane-modulatory effects of statins and the mechanisms by which statins alter lipid bilayers remain poorly understood. In this work, we explore the membrane-modulating effects of statins on model lipid bilayers and live cells. Through the use of fluorescence lifetime imaging microscopy (FLIM) combined with viscosity-sensitive environmental probes, we demonstrate that hydrophobic, but not hydrophilic, statins are capable of changing the microviscosity and lipid order in model and live cell membranes. Furthermore, we show that hydrophobic simvastatin is capable of forming nanoscale cholesterol-rich domains and homogenizing the cholesterol concentrations in lipid bilayers. Our results provide a mechanistic framework for understanding the bimodal effects of simvastatin on the lipid order and the lateral organization of cholesterol in lipid bilayers. Finally, we demonstrate that simvastatin temporarily decreases the microviscosity of live cell plasma membranes, making them more permeable and increasing the level of intracellular chemotherapeutic drug accumulation.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture