{"title":"使用集成微蜂窝的相干光到微波链路","authors":"Qing-Xin Ji;Wei Zhang;Lue Wu;Warren Jin;Joel Guo;Avi Feshali;Mario Paniccia;John Bowers;Andrey Matsko;Kerry Vahala","doi":"10.1109/JSTQE.2024.3451301","DOIUrl":null,"url":null,"abstract":"Microcombs are advancing optical frequency comb technology towards a chip-integrable form. Here, we characterize a microwave signal source based upon the two-point optical frequency division (2P-OFD) technique. The system uses a frequency microcomb to transfer relative frequency stability of two low-noise optical oscillators to the microcomb repetition rate tone. The two optical oscillators are based on semiconductor lasers jointly stabilized to an ultra-stable Fabry–Pérot cavity. The coherence of the comb spectrum is confirmed through multiple stability comparisons between its repetition rate and comb line spectrum. The results underscore the excellent performance of microcombs as coherent links between optical and microwave frequencies, and how they enable simplified, miniaturized architectures for optical frequency division.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":"30 5: Microresonator Frequency Comb Technologies","pages":"1-7"},"PeriodicalIF":4.3000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10654539","citationCount":"0","resultStr":"{\"title\":\"Coherent Optical-to-Microwave Link Using an Integrated Microcomb\",\"authors\":\"Qing-Xin Ji;Wei Zhang;Lue Wu;Warren Jin;Joel Guo;Avi Feshali;Mario Paniccia;John Bowers;Andrey Matsko;Kerry Vahala\",\"doi\":\"10.1109/JSTQE.2024.3451301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microcombs are advancing optical frequency comb technology towards a chip-integrable form. Here, we characterize a microwave signal source based upon the two-point optical frequency division (2P-OFD) technique. The system uses a frequency microcomb to transfer relative frequency stability of two low-noise optical oscillators to the microcomb repetition rate tone. The two optical oscillators are based on semiconductor lasers jointly stabilized to an ultra-stable Fabry–Pérot cavity. The coherence of the comb spectrum is confirmed through multiple stability comparisons between its repetition rate and comb line spectrum. The results underscore the excellent performance of microcombs as coherent links between optical and microwave frequencies, and how they enable simplified, miniaturized architectures for optical frequency division.\",\"PeriodicalId\":13094,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Quantum Electronics\",\"volume\":\"30 5: Microresonator Frequency Comb Technologies\",\"pages\":\"1-7\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10654539\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Quantum Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10654539/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10654539/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Coherent Optical-to-Microwave Link Using an Integrated Microcomb
Microcombs are advancing optical frequency comb technology towards a chip-integrable form. Here, we characterize a microwave signal source based upon the two-point optical frequency division (2P-OFD) technique. The system uses a frequency microcomb to transfer relative frequency stability of two low-noise optical oscillators to the microcomb repetition rate tone. The two optical oscillators are based on semiconductor lasers jointly stabilized to an ultra-stable Fabry–Pérot cavity. The coherence of the comb spectrum is confirmed through multiple stability comparisons between its repetition rate and comb line spectrum. The results underscore the excellent performance of microcombs as coherent links between optical and microwave frequencies, and how they enable simplified, miniaturized architectures for optical frequency division.
期刊介绍:
Papers published in the IEEE Journal of Selected Topics in Quantum Electronics fall within the broad field of science and technology of quantum electronics of a device, subsystem, or system-oriented nature. Each issue is devoted to a specific topic within this broad spectrum. Announcements of the topical areas planned for future issues, along with deadlines for receipt of manuscripts, are published in this Journal and in the IEEE Journal of Quantum Electronics. Generally, the scope of manuscripts appropriate to this Journal is the same as that for the IEEE Journal of Quantum Electronics. Manuscripts are published that report original theoretical and/or experimental research results that advance the scientific and technological base of quantum electronics devices, systems, or applications. The Journal is dedicated toward publishing research results that advance the state of the art or add to the understanding of the generation, amplification, modulation, detection, waveguiding, or propagation characteristics of coherent electromagnetic radiation having sub-millimeter and shorter wavelengths. In order to be suitable for publication in this Journal, the content of manuscripts concerned with subject-related research must have a potential impact on advancing the technological base of quantum electronic devices, systems, and/or applications. Potential authors of subject-related research have the responsibility of pointing out this potential impact. System-oriented manuscripts must be concerned with systems that perform a function previously unavailable or that outperform previously established systems that did not use quantum electronic components or concepts. Tutorial and review papers are by invitation only.