{"title":"纳米二氧化硅颗粒通过调节抗氧化酶活性和水杨酸积累增强小麦对镰刀菌头枯病的抗性","authors":"Junliang Yin, Keke Li, Xi Liu, Shuo Han, Xiaowen Han, Wei Liu, Yiting Li, Yunfeng Chen, Yongxing Zhu","doi":"10.1039/d4en00435c","DOIUrl":null,"url":null,"abstract":"Fusarium head blight (FHB) disease severely impacts wheat production and quality. Silica nanoparticles (SiNPs) are demonstrated as an eco-friendly option for diseases management, but the specific mechanisms behind their ability to confer disease resistance in wheat have not been adequately characterized. This study evaluates the impact of SiNP200 on the resistance of wheat to FHB. Scanning electron microscope observation showed that SiNPs form a physical barrier on the surface of wheat leaves. Pathogenicity tests indicated foliar application of SiNP200 can protect wheat against F. graminearum, resulting in a significant reduction of lesion length by 27.7%, but in-vitro cultivation showed that SiNP200 had no impact on pathogen growth. Antioxidant enzyme activity analysis showed that SiNP200 had little effect on H2O2 contents, POD, and CAT activities under non-stress conditions, but under F. graminearum infection conditions, SiNP200 increased POD and SOD activities while decreased CAT and DHAR activities, and GSH content. Histochemical staining indicated that SiNP200 decreased ROS accumulation, thus reducing oxidative damage. Meanwhile, SiNP200 decreased MDA and Pro contents. Furthermore, SiNP200 increased SA response marker genes (TaPR1a, TaPR2 and TaPR5) expression levels and SA content, contributing to the enhanced wheat resistance to FHB. Summarily, SiNP200 improve wheat resistance to FHB, thereby providing a theoretical basis for SiNP200 application to control this disease.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silica nanoparticles enhance wheat resistance to fusarium head blight through modulating antioxidant enzyme activities and salicylic acid accumulation\",\"authors\":\"Junliang Yin, Keke Li, Xi Liu, Shuo Han, Xiaowen Han, Wei Liu, Yiting Li, Yunfeng Chen, Yongxing Zhu\",\"doi\":\"10.1039/d4en00435c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fusarium head blight (FHB) disease severely impacts wheat production and quality. Silica nanoparticles (SiNPs) are demonstrated as an eco-friendly option for diseases management, but the specific mechanisms behind their ability to confer disease resistance in wheat have not been adequately characterized. This study evaluates the impact of SiNP200 on the resistance of wheat to FHB. Scanning electron microscope observation showed that SiNPs form a physical barrier on the surface of wheat leaves. Pathogenicity tests indicated foliar application of SiNP200 can protect wheat against F. graminearum, resulting in a significant reduction of lesion length by 27.7%, but in-vitro cultivation showed that SiNP200 had no impact on pathogen growth. Antioxidant enzyme activity analysis showed that SiNP200 had little effect on H2O2 contents, POD, and CAT activities under non-stress conditions, but under F. graminearum infection conditions, SiNP200 increased POD and SOD activities while decreased CAT and DHAR activities, and GSH content. Histochemical staining indicated that SiNP200 decreased ROS accumulation, thus reducing oxidative damage. Meanwhile, SiNP200 decreased MDA and Pro contents. Furthermore, SiNP200 increased SA response marker genes (TaPR1a, TaPR2 and TaPR5) expression levels and SA content, contributing to the enhanced wheat resistance to FHB. Summarily, SiNP200 improve wheat resistance to FHB, thereby providing a theoretical basis for SiNP200 application to control this disease.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://doi.org/10.1039/d4en00435c\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d4en00435c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Silica nanoparticles enhance wheat resistance to fusarium head blight through modulating antioxidant enzyme activities and salicylic acid accumulation
Fusarium head blight (FHB) disease severely impacts wheat production and quality. Silica nanoparticles (SiNPs) are demonstrated as an eco-friendly option for diseases management, but the specific mechanisms behind their ability to confer disease resistance in wheat have not been adequately characterized. This study evaluates the impact of SiNP200 on the resistance of wheat to FHB. Scanning electron microscope observation showed that SiNPs form a physical barrier on the surface of wheat leaves. Pathogenicity tests indicated foliar application of SiNP200 can protect wheat against F. graminearum, resulting in a significant reduction of lesion length by 27.7%, but in-vitro cultivation showed that SiNP200 had no impact on pathogen growth. Antioxidant enzyme activity analysis showed that SiNP200 had little effect on H2O2 contents, POD, and CAT activities under non-stress conditions, but under F. graminearum infection conditions, SiNP200 increased POD and SOD activities while decreased CAT and DHAR activities, and GSH content. Histochemical staining indicated that SiNP200 decreased ROS accumulation, thus reducing oxidative damage. Meanwhile, SiNP200 decreased MDA and Pro contents. Furthermore, SiNP200 increased SA response marker genes (TaPR1a, TaPR2 and TaPR5) expression levels and SA content, contributing to the enhanced wheat resistance to FHB. Summarily, SiNP200 improve wheat resistance to FHB, thereby providing a theoretical basis for SiNP200 application to control this disease.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.