{"title":"小胶质细胞桥接大脑活动和血压","authors":"Yanxia Rao, Bo Peng","doi":"10.1016/j.immuni.2024.08.006","DOIUrl":null,"url":null,"abstract":"<p>Our brain is not an immune-privileged island isolated from peripheries, but how non-neuronal brain cells interact with the peripheral system is not well understood. Wei et al. report that microglia in the hypothalamic paraventricular nucleus (PVN) with unique vasculature can detect ATP derived from hemodynamic disturbance. These microglia in the PVN regulate the response to hypertension via ATP-P2Y12-C/EBPβ signaling.</p>","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"82 1","pages":""},"PeriodicalIF":25.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microglia bridge brain activity and blood pressure\",\"authors\":\"Yanxia Rao, Bo Peng\",\"doi\":\"10.1016/j.immuni.2024.08.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Our brain is not an immune-privileged island isolated from peripheries, but how non-neuronal brain cells interact with the peripheral system is not well understood. Wei et al. report that microglia in the hypothalamic paraventricular nucleus (PVN) with unique vasculature can detect ATP derived from hemodynamic disturbance. These microglia in the PVN regulate the response to hypertension via ATP-P2Y12-C/EBPβ signaling.</p>\",\"PeriodicalId\":13269,\"journal\":{\"name\":\"Immunity\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":25.5000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.immuni.2024.08.006\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.immuni.2024.08.006","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Microglia bridge brain activity and blood pressure
Our brain is not an immune-privileged island isolated from peripheries, but how non-neuronal brain cells interact with the peripheral system is not well understood. Wei et al. report that microglia in the hypothalamic paraventricular nucleus (PVN) with unique vasculature can detect ATP derived from hemodynamic disturbance. These microglia in the PVN regulate the response to hypertension via ATP-P2Y12-C/EBPβ signaling.
期刊介绍:
Immunity is a publication that focuses on publishing significant advancements in research related to immunology. We encourage the submission of studies that offer groundbreaking immunological discoveries, whether at the molecular, cellular, or whole organism level. Topics of interest encompass a wide range, such as cancer, infectious diseases, neuroimmunology, autoimmune diseases, allergies, mucosal immunity, metabolic diseases, and homeostasis.