用于长寿命全固态钠电池的硫化物基固体电解质对潮湿空气的耐受性高

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2024-09-10 DOI:10.1002/aenm.202401504
Yayu Guo, Kai Liu, Cheng Li, Dawei Song, Hongzhou Zhang, Zhenyu Wang, Yufen Yan, Lianqi Zhang, Sheng Dai
{"title":"用于长寿命全固态钠电池的硫化物基固体电解质对潮湿空气的耐受性高","authors":"Yayu Guo, Kai Liu, Cheng Li, Dawei Song, Hongzhou Zhang, Zhenyu Wang, Yufen Yan, Lianqi Zhang, Sheng Dai","doi":"10.1002/aenm.202401504","DOIUrl":null,"url":null,"abstract":"Sulfide-based superionic conductors present great promise to achieve high energy density and safety for all-solid-state sodium batteries (ASSSBs). However, the poor electrolyte/electrode interface compatibility and humid air stability seriously hinder their deployment in ASSSBs. Herein, a series of high-performance Na<sub>3-□</sub>Sb<sub>1-4x</sub>(SnWCaTi)<sub>x</sub>S<sub>4</sub> sulfide-based solid electrolytes (SSEs) are reported by coupling the vacancy effect with configurational entropy, which displays an excellent interface stability against sodium metal and an extraordinary tolerance toward the moist atmosphere, even for water. The optimized electrolyte effectively inhibits the detrimental mixed ion-electron conducting interphase formation, achieving the ultra-stable operation of Na–Na symmetric cell up to 1000 h. Furthermore, the Na<sup>+</sup> diffusion kinetics is obviously enhanced by increasing the Na sites local anisotropy and Na vacancies. Eventually, the assembled TiS<sub>2</sub>//Na<sub>5</sub>Sn ASSSBs deliver a remarkable reversible capacity of 211.6 mAh g<sup>−1</sup> at 0.5C with a long-term cycling performance of 450 cycles at room temperature. More importantly, it achieves a steady running up to 100 cycles at 1C even if this electrolyte is placed in the air with a dew temperature of 13.8 °C for 30 min, the highest values in the state-of-the-art sulfide-based ASSSBs. The well-designed SSEs open a new avenue for realizing the advanced and powerful ASSSBs.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":null,"pages":null},"PeriodicalIF":24.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Sulfide-Based Solid Electrolyte With High Humid Air Tolerance for Long Lifespan All-Solid-State Sodium Batteries\",\"authors\":\"Yayu Guo, Kai Liu, Cheng Li, Dawei Song, Hongzhou Zhang, Zhenyu Wang, Yufen Yan, Lianqi Zhang, Sheng Dai\",\"doi\":\"10.1002/aenm.202401504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sulfide-based superionic conductors present great promise to achieve high energy density and safety for all-solid-state sodium batteries (ASSSBs). However, the poor electrolyte/electrode interface compatibility and humid air stability seriously hinder their deployment in ASSSBs. Herein, a series of high-performance Na<sub>3-□</sub>Sb<sub>1-4x</sub>(SnWCaTi)<sub>x</sub>S<sub>4</sub> sulfide-based solid electrolytes (SSEs) are reported by coupling the vacancy effect with configurational entropy, which displays an excellent interface stability against sodium metal and an extraordinary tolerance toward the moist atmosphere, even for water. The optimized electrolyte effectively inhibits the detrimental mixed ion-electron conducting interphase formation, achieving the ultra-stable operation of Na–Na symmetric cell up to 1000 h. Furthermore, the Na<sup>+</sup> diffusion kinetics is obviously enhanced by increasing the Na sites local anisotropy and Na vacancies. Eventually, the assembled TiS<sub>2</sub>//Na<sub>5</sub>Sn ASSSBs deliver a remarkable reversible capacity of 211.6 mAh g<sup>−1</sup> at 0.5C with a long-term cycling performance of 450 cycles at room temperature. More importantly, it achieves a steady running up to 100 cycles at 1C even if this electrolyte is placed in the air with a dew temperature of 13.8 °C for 30 min, the highest values in the state-of-the-art sulfide-based ASSSBs. The well-designed SSEs open a new avenue for realizing the advanced and powerful ASSSBs.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202401504\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202401504","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

硫化物基超离子导体在实现全固态钠电池(ASSSB)的高能量密度和安全性方面大有可为。然而,电解质/电极界面兼容性差以及在潮湿空气中的稳定性严重阻碍了它们在全固态钠电池中的应用。本文报告了一系列高性能 Na3-□Sb1-4x(SnWCaTi)xS4 硫化物基固体电解质(SSEs),该电解质将空位效应与构型熵耦合在一起,对金属钠具有极佳的界面稳定性,对潮湿空气具有超强的耐受性,甚至对水也是如此。此外,通过增加 Na 位点的局部各向异性和 Na 空位,Na+ 扩散动力学明显增强。最终,组装好的 TiS2/Na5Sn ASSSB 在 0.5C 温度下可提供 211.6 mAh g-1 的显著可逆容量,在室温下可长期循环 450 次。更重要的是,即使将这种电解质放在露水温度为 13.8 °C 的空气中 30 分钟,它也能在 1C 温度下稳定运行 100 个循环。精心设计的 SSE 为实现先进、功能强大的 ASSSB 开辟了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Sulfide-Based Solid Electrolyte With High Humid Air Tolerance for Long Lifespan All-Solid-State Sodium Batteries
Sulfide-based superionic conductors present great promise to achieve high energy density and safety for all-solid-state sodium batteries (ASSSBs). However, the poor electrolyte/electrode interface compatibility and humid air stability seriously hinder their deployment in ASSSBs. Herein, a series of high-performance Na3-□Sb1-4x(SnWCaTi)xS4 sulfide-based solid electrolytes (SSEs) are reported by coupling the vacancy effect with configurational entropy, which displays an excellent interface stability against sodium metal and an extraordinary tolerance toward the moist atmosphere, even for water. The optimized electrolyte effectively inhibits the detrimental mixed ion-electron conducting interphase formation, achieving the ultra-stable operation of Na–Na symmetric cell up to 1000 h. Furthermore, the Na+ diffusion kinetics is obviously enhanced by increasing the Na sites local anisotropy and Na vacancies. Eventually, the assembled TiS2//Na5Sn ASSSBs deliver a remarkable reversible capacity of 211.6 mAh g−1 at 0.5C with a long-term cycling performance of 450 cycles at room temperature. More importantly, it achieves a steady running up to 100 cycles at 1C even if this electrolyte is placed in the air with a dew temperature of 13.8 °C for 30 min, the highest values in the state-of-the-art sulfide-based ASSSBs. The well-designed SSEs open a new avenue for realizing the advanced and powerful ASSSBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Revolutionizing Oxygen Evolution Reaction Catalysts: Efficient and Ultrastable Interstitial W-Doped NiFe-LDHs/MOFs through Controlled Topological Conversion of Metal-Organic Frameworks (Adv. Energy Mater. 37/2024) A Bio-Inspired Dendritic MoOx Electrocatalyst for Efficient Electrochemical Nitrate Reduction to Ammonia (Adv. Energy Mater. 37/2024) Topological-Insulator Nanocomposite and Graphite-Like Tribo-Charge-Accumulating Fabric Enabling High-performance Non-Contact Stretchable and Textile-Based Triboelectric Nanogenerators with Robust Charge Retention (Adv. Energy Mater. 37/2024) Masthead: (Adv. Energy Mater. 37/2024) Advancing Charge Density in Temperature-Dependent Amphiphile Metal–Organic Polyhedra-Based Triboelectric Nanogenerators (Adv. Energy Mater. 37/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1