Hulin Yang , Shizhuo Wang , Meiyi Zhao , Yonghong Liao , Fenghuan Wang , Xian Yin
{"title":"大肠杆菌生产硒代-甲基硒代半胱氨酸的代谢工程","authors":"Hulin Yang , Shizhuo Wang , Meiyi Zhao , Yonghong Liao , Fenghuan Wang , Xian Yin","doi":"10.1016/j.jbiotec.2024.09.006","DOIUrl":null,"url":null,"abstract":"<div><p>Selenium (Se) is an essential trace element for life. Seleno-methylselenocysteine (SeMCys) can serve as a Se supplement with anticarcinogenic activity and can improve cognitive deficits. We engineered <em>Escherichia coli</em> for microbial production of SeMCys. The genes involved in the synthesis of SeMCys were divided into three modules–the selenocysteine (SeCys) synthesis, methyl donor synthesis and SMT modules–and expressed in plasmids with different copy numbers. The higher copy number of the SeCys synthesis module facilitated SeMCys production. The major routes for SeCys degradation were then modified. Deletion of the cysteine desulfurase gene <em>csdA</em> or <em>sufS</em> improved SeMCys production the most, and the strain that knocked out both genes doubled SeMCys production. The addition of serine in the mid-logarithmic growth phase significantly improved SeMCys synthesis. When the serine synthetic pathway was enhanced, SeMCys production increased by 12.5 %. Fed-batch culture for sodium selenite supplementation in the early stationary phase improved SeMCys production to 3.715 mg/L. This is the first report of the metabolic engineering of <em>E. coli</em> for the production of SeMCys and provide information on Se metabolism.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"395 ","pages":"Pages 22-30"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168165624002487/pdfft?md5=f7bc06ee4d10bd2ce5669362e14d3c0a&pid=1-s2.0-S0168165624002487-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Metabolic engineering of Escherichia coli for seleno-methylselenocysteine production\",\"authors\":\"Hulin Yang , Shizhuo Wang , Meiyi Zhao , Yonghong Liao , Fenghuan Wang , Xian Yin\",\"doi\":\"10.1016/j.jbiotec.2024.09.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Selenium (Se) is an essential trace element for life. Seleno-methylselenocysteine (SeMCys) can serve as a Se supplement with anticarcinogenic activity and can improve cognitive deficits. We engineered <em>Escherichia coli</em> for microbial production of SeMCys. The genes involved in the synthesis of SeMCys were divided into three modules–the selenocysteine (SeCys) synthesis, methyl donor synthesis and SMT modules–and expressed in plasmids with different copy numbers. The higher copy number of the SeCys synthesis module facilitated SeMCys production. The major routes for SeCys degradation were then modified. Deletion of the cysteine desulfurase gene <em>csdA</em> or <em>sufS</em> improved SeMCys production the most, and the strain that knocked out both genes doubled SeMCys production. The addition of serine in the mid-logarithmic growth phase significantly improved SeMCys synthesis. When the serine synthetic pathway was enhanced, SeMCys production increased by 12.5 %. Fed-batch culture for sodium selenite supplementation in the early stationary phase improved SeMCys production to 3.715 mg/L. This is the first report of the metabolic engineering of <em>E. coli</em> for the production of SeMCys and provide information on Se metabolism.</p></div>\",\"PeriodicalId\":15153,\"journal\":{\"name\":\"Journal of biotechnology\",\"volume\":\"395 \",\"pages\":\"Pages 22-30\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0168165624002487/pdfft?md5=f7bc06ee4d10bd2ce5669362e14d3c0a&pid=1-s2.0-S0168165624002487-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168165624002487\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168165624002487","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Metabolic engineering of Escherichia coli for seleno-methylselenocysteine production
Selenium (Se) is an essential trace element for life. Seleno-methylselenocysteine (SeMCys) can serve as a Se supplement with anticarcinogenic activity and can improve cognitive deficits. We engineered Escherichia coli for microbial production of SeMCys. The genes involved in the synthesis of SeMCys were divided into three modules–the selenocysteine (SeCys) synthesis, methyl donor synthesis and SMT modules–and expressed in plasmids with different copy numbers. The higher copy number of the SeCys synthesis module facilitated SeMCys production. The major routes for SeCys degradation were then modified. Deletion of the cysteine desulfurase gene csdA or sufS improved SeMCys production the most, and the strain that knocked out both genes doubled SeMCys production. The addition of serine in the mid-logarithmic growth phase significantly improved SeMCys synthesis. When the serine synthetic pathway was enhanced, SeMCys production increased by 12.5 %. Fed-batch culture for sodium selenite supplementation in the early stationary phase improved SeMCys production to 3.715 mg/L. This is the first report of the metabolic engineering of E. coli for the production of SeMCys and provide information on Se metabolism.
期刊介绍:
The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.