大肠杆菌生产硒代-甲基硒代半胱氨酸的代谢工程

IF 4.1 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of biotechnology Pub Date : 2024-09-10 DOI:10.1016/j.jbiotec.2024.09.006
Hulin Yang , Shizhuo Wang , Meiyi Zhao , Yonghong Liao , Fenghuan Wang , Xian Yin
{"title":"大肠杆菌生产硒代-甲基硒代半胱氨酸的代谢工程","authors":"Hulin Yang ,&nbsp;Shizhuo Wang ,&nbsp;Meiyi Zhao ,&nbsp;Yonghong Liao ,&nbsp;Fenghuan Wang ,&nbsp;Xian Yin","doi":"10.1016/j.jbiotec.2024.09.006","DOIUrl":null,"url":null,"abstract":"<div><p>Selenium (Se) is an essential trace element for life. Seleno-methylselenocysteine (SeMCys) can serve as a Se supplement with anticarcinogenic activity and can improve cognitive deficits. We engineered <em>Escherichia coli</em> for microbial production of SeMCys. The genes involved in the synthesis of SeMCys were divided into three modules–the selenocysteine (SeCys) synthesis, methyl donor synthesis and SMT modules–and expressed in plasmids with different copy numbers. The higher copy number of the SeCys synthesis module facilitated SeMCys production. The major routes for SeCys degradation were then modified. Deletion of the cysteine desulfurase gene <em>csdA</em> or <em>sufS</em> improved SeMCys production the most, and the strain that knocked out both genes doubled SeMCys production. The addition of serine in the mid-logarithmic growth phase significantly improved SeMCys synthesis. When the serine synthetic pathway was enhanced, SeMCys production increased by 12.5 %. Fed-batch culture for sodium selenite supplementation in the early stationary phase improved SeMCys production to 3.715 mg/L. This is the first report of the metabolic engineering of <em>E. coli</em> for the production of SeMCys and provide information on Se metabolism.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"395 ","pages":"Pages 22-30"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168165624002487/pdfft?md5=f7bc06ee4d10bd2ce5669362e14d3c0a&pid=1-s2.0-S0168165624002487-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Metabolic engineering of Escherichia coli for seleno-methylselenocysteine production\",\"authors\":\"Hulin Yang ,&nbsp;Shizhuo Wang ,&nbsp;Meiyi Zhao ,&nbsp;Yonghong Liao ,&nbsp;Fenghuan Wang ,&nbsp;Xian Yin\",\"doi\":\"10.1016/j.jbiotec.2024.09.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Selenium (Se) is an essential trace element for life. Seleno-methylselenocysteine (SeMCys) can serve as a Se supplement with anticarcinogenic activity and can improve cognitive deficits. We engineered <em>Escherichia coli</em> for microbial production of SeMCys. The genes involved in the synthesis of SeMCys were divided into three modules–the selenocysteine (SeCys) synthesis, methyl donor synthesis and SMT modules–and expressed in plasmids with different copy numbers. The higher copy number of the SeCys synthesis module facilitated SeMCys production. The major routes for SeCys degradation were then modified. Deletion of the cysteine desulfurase gene <em>csdA</em> or <em>sufS</em> improved SeMCys production the most, and the strain that knocked out both genes doubled SeMCys production. The addition of serine in the mid-logarithmic growth phase significantly improved SeMCys synthesis. When the serine synthetic pathway was enhanced, SeMCys production increased by 12.5 %. Fed-batch culture for sodium selenite supplementation in the early stationary phase improved SeMCys production to 3.715 mg/L. This is the first report of the metabolic engineering of <em>E. coli</em> for the production of SeMCys and provide information on Se metabolism.</p></div>\",\"PeriodicalId\":15153,\"journal\":{\"name\":\"Journal of biotechnology\",\"volume\":\"395 \",\"pages\":\"Pages 22-30\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0168165624002487/pdfft?md5=f7bc06ee4d10bd2ce5669362e14d3c0a&pid=1-s2.0-S0168165624002487-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168165624002487\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168165624002487","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

硒(Se)是生命必需的微量元素。硒代甲基硒代半胱氨酸(SeMCys)可作为具有抗癌活性的硒补充剂,并能改善认知障碍。我们设计了大肠埃希氏菌,用于微生物生产 SeMCys。参与合成 SeMCys 的基因被分为三个模块--硒代半胱氨酸(SeCys)合成模块、甲基供体合成模块和 SMT 模块,并以不同拷贝数的质粒表达。SeCys 合成模块的拷贝数越高,SeMCys 的生产就越容易。SeCys 降解的主要途径也随之改变。半胱氨酸脱硫酶基因 csdA 或 sufS 的缺失对 SeMCys 产量的改善最大,而敲除这两个基因的菌株的 SeMCys 产量翻了一番。在对数生长中期添加丝氨酸能显著提高 SeMCys 的合成。当丝氨酸合成途径得到加强时,SeMCys 的产量增加了 12.5%。在静止初期补充亚硒酸钠的分批进行喂养培养,可将 SeMCys 的产量提高到 3.715 毫克/升。这是首次报道利用大肠杆菌代谢工程生产 SeMCys,并提供了有关 Se 代谢的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metabolic engineering of Escherichia coli for seleno-methylselenocysteine production

Selenium (Se) is an essential trace element for life. Seleno-methylselenocysteine (SeMCys) can serve as a Se supplement with anticarcinogenic activity and can improve cognitive deficits. We engineered Escherichia coli for microbial production of SeMCys. The genes involved in the synthesis of SeMCys were divided into three modules–the selenocysteine (SeCys) synthesis, methyl donor synthesis and SMT modules–and expressed in plasmids with different copy numbers. The higher copy number of the SeCys synthesis module facilitated SeMCys production. The major routes for SeCys degradation were then modified. Deletion of the cysteine desulfurase gene csdA or sufS improved SeMCys production the most, and the strain that knocked out both genes doubled SeMCys production. The addition of serine in the mid-logarithmic growth phase significantly improved SeMCys synthesis. When the serine synthetic pathway was enhanced, SeMCys production increased by 12.5 %. Fed-batch culture for sodium selenite supplementation in the early stationary phase improved SeMCys production to 3.715 mg/L. This is the first report of the metabolic engineering of E. coli for the production of SeMCys and provide information on Se metabolism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of biotechnology
Journal of biotechnology 工程技术-生物工程与应用微生物
CiteScore
8.90
自引率
2.40%
发文量
190
审稿时长
45 days
期刊介绍: The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.
期刊最新文献
A pump-free microfluidic co-culture system for investigating NK cell-tumor spheroid interactions in flow conditions. Engineering Saccharomyces cerevisiae for continuous secretory production of hEGF in biofilm. Digital holographic microscopy is suitable for lipid accumulation analysis in single cells of Yarrowia lipolytica. Hydrogen production capabilities of lichens micro-ecosystem under extreme salinity, crystalline salt exposure, and simulated Mars-like conditions Structure-guided engineering of 4-coumarate: CoA ligase for efficient production of rosmarinic acid in Saccharomyces cerevisiae
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1