{"title":"基于壳聚糖的先进功能性纳米复合材料,可用于性能要求苛刻的应用领域","authors":"Yabin Guo , Dongling Qiao , Siming Zhao , Binjia Zhang , Fengwei Xie","doi":"10.1016/j.progpolymsci.2024.101872","DOIUrl":null,"url":null,"abstract":"<div><p>Chitosan holds great promise for demanding applications such as functional packing and biomedical uses. There has been a notable increase in interest in combining chitosan or its derivatives with other polymers and nanofillers to achieve synergistic effects. Remarkable progress has been made through polymer molecular design and iterative nanotechnology in the development of chitosan-based nanocomposite materials tailored for high-performance applications. This review focuses on strategies to develop chitosan-based materials, highlighting the advantages and disadvantages of chitosan modification and critically evaluating various fabrication methods. Following a brief introduction to various nanofillers and their functionalization, this review discusses the functional properties (e.g., mechanical, thermal, water resistance, gas-barrier, stimulus-response, shape memory, biological, electrochemical, corrosion-protection, antifouling, and abruption/desorption) of various chitosan-based nanocomposite systems. It then highlights the emerging and potential applications of chitosan-based nanocomposites in various fields such as functional packaging, biomedicine, 3D bioprinting, sensing and wearable devices, environmental remediation, and chemical engineering. Moreover, we explore the factors that hinder the commercialization of chitosan-based nanocomposites. Our review not only surveys recent advancements in engineering sophisticated functional chitosan-based nanocomposite materials, customized for a diverse array of applications, but also offers insights into the future formulation of multifaceted chitosan-based nanocomposites, poised to tackle the distinct demands and hurdles encountered in burgeoning applications.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"157 ","pages":"Article 101872"},"PeriodicalIF":26.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079670024000893/pdfft?md5=6c7646e55c4e584fa1ae1005b55d525d&pid=1-s2.0-S0079670024000893-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Advanced functional chitosan-based nanocomposite materials for performance-demanding applications\",\"authors\":\"Yabin Guo , Dongling Qiao , Siming Zhao , Binjia Zhang , Fengwei Xie\",\"doi\":\"10.1016/j.progpolymsci.2024.101872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chitosan holds great promise for demanding applications such as functional packing and biomedical uses. There has been a notable increase in interest in combining chitosan or its derivatives with other polymers and nanofillers to achieve synergistic effects. Remarkable progress has been made through polymer molecular design and iterative nanotechnology in the development of chitosan-based nanocomposite materials tailored for high-performance applications. This review focuses on strategies to develop chitosan-based materials, highlighting the advantages and disadvantages of chitosan modification and critically evaluating various fabrication methods. Following a brief introduction to various nanofillers and their functionalization, this review discusses the functional properties (e.g., mechanical, thermal, water resistance, gas-barrier, stimulus-response, shape memory, biological, electrochemical, corrosion-protection, antifouling, and abruption/desorption) of various chitosan-based nanocomposite systems. It then highlights the emerging and potential applications of chitosan-based nanocomposites in various fields such as functional packaging, biomedicine, 3D bioprinting, sensing and wearable devices, environmental remediation, and chemical engineering. Moreover, we explore the factors that hinder the commercialization of chitosan-based nanocomposites. Our review not only surveys recent advancements in engineering sophisticated functional chitosan-based nanocomposite materials, customized for a diverse array of applications, but also offers insights into the future formulation of multifaceted chitosan-based nanocomposites, poised to tackle the distinct demands and hurdles encountered in burgeoning applications.</p></div>\",\"PeriodicalId\":413,\"journal\":{\"name\":\"Progress in Polymer Science\",\"volume\":\"157 \",\"pages\":\"Article 101872\"},\"PeriodicalIF\":26.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0079670024000893/pdfft?md5=6c7646e55c4e584fa1ae1005b55d525d&pid=1-s2.0-S0079670024000893-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079670024000893\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079670024000893","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Advanced functional chitosan-based nanocomposite materials for performance-demanding applications
Chitosan holds great promise for demanding applications such as functional packing and biomedical uses. There has been a notable increase in interest in combining chitosan or its derivatives with other polymers and nanofillers to achieve synergistic effects. Remarkable progress has been made through polymer molecular design and iterative nanotechnology in the development of chitosan-based nanocomposite materials tailored for high-performance applications. This review focuses on strategies to develop chitosan-based materials, highlighting the advantages and disadvantages of chitosan modification and critically evaluating various fabrication methods. Following a brief introduction to various nanofillers and their functionalization, this review discusses the functional properties (e.g., mechanical, thermal, water resistance, gas-barrier, stimulus-response, shape memory, biological, electrochemical, corrosion-protection, antifouling, and abruption/desorption) of various chitosan-based nanocomposite systems. It then highlights the emerging and potential applications of chitosan-based nanocomposites in various fields such as functional packaging, biomedicine, 3D bioprinting, sensing and wearable devices, environmental remediation, and chemical engineering. Moreover, we explore the factors that hinder the commercialization of chitosan-based nanocomposites. Our review not only surveys recent advancements in engineering sophisticated functional chitosan-based nanocomposite materials, customized for a diverse array of applications, but also offers insights into the future formulation of multifaceted chitosan-based nanocomposites, poised to tackle the distinct demands and hurdles encountered in burgeoning applications.
期刊介绍:
Progress in Polymer Science is a journal that publishes state-of-the-art overview articles in the field of polymer science and engineering. These articles are written by internationally recognized authorities in the discipline, making it a valuable resource for staying up-to-date with the latest developments in this rapidly growing field.
The journal serves as a link between original articles, innovations published in patents, and the most current knowledge of technology. It covers a wide range of topics within the traditional fields of polymer science, including chemistry, physics, and engineering involving polymers. Additionally, it explores interdisciplinary developing fields such as functional and specialty polymers, biomaterials, polymers in drug delivery, polymers in electronic applications, composites, conducting polymers, liquid crystalline materials, and the interphases between polymers and ceramics. The journal also highlights new fabrication techniques that are making significant contributions to the field.
The subject areas covered by Progress in Polymer Science include biomaterials, materials chemistry, organic chemistry, polymers and plastics, surfaces, coatings and films, and nanotechnology. The journal is indexed and abstracted in various databases, including Materials Science Citation Index, Chemical Abstracts, Engineering Index, Current Contents, FIZ Karlsruhe, Scopus, and INSPEC.