Ke Cheng, Junchen Ye, Xiaodong Lu, Leilei Sun, Bowen Du
{"title":"用于连续时间动态事件序列的时序图网络","authors":"Ke Cheng, Junchen Ye, Xiaodong Lu, Leilei Sun, Bowen Du","doi":"10.1016/j.knosys.2024.112452","DOIUrl":null,"url":null,"abstract":"<div><p>Continuous-Time Dynamic Graph (CTDG) methods have shown their superior ability in learning representations for dynamic graph-structured data, the methods split the sequential updating process into discrete batches to reduce the computation costs, as a result, the message constructor in existing CTDG methods cannot be optimized by gradient descent and is designed to be parameter-free. In particular, this layer fails to embed complex event subgraphs and ignores the structure information, while most real-world events are structured and complex. For example, a paper publication event in an academic graph contains different relations like authorship and citations. Furthermore, the corresponding nodes could not receive position-wise messages to make precise representation updates. To tackle this issue, we propose a new method called Temporal Graph Network for continuous-time dynamic Event sequence (TGNE) with a structure-aware message constructor to update node representation with complex event subgraph, by treating message construction and delivery as a message-passing process, in this way, the message constructor can be formalized as a graph neural network layer. TGNE extends the input of CTDG methods to subgraphs with complex structures and preserves more information in message delivery. Extensive experiments demonstrate that the proposed method can achieve competitive performance on traditional tasks on bipartite graphs and event sequence learning tasks on heterogeneous graphs.</p></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal Graph Network for continuous-time dynamic event sequence\",\"authors\":\"Ke Cheng, Junchen Ye, Xiaodong Lu, Leilei Sun, Bowen Du\",\"doi\":\"10.1016/j.knosys.2024.112452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Continuous-Time Dynamic Graph (CTDG) methods have shown their superior ability in learning representations for dynamic graph-structured data, the methods split the sequential updating process into discrete batches to reduce the computation costs, as a result, the message constructor in existing CTDG methods cannot be optimized by gradient descent and is designed to be parameter-free. In particular, this layer fails to embed complex event subgraphs and ignores the structure information, while most real-world events are structured and complex. For example, a paper publication event in an academic graph contains different relations like authorship and citations. Furthermore, the corresponding nodes could not receive position-wise messages to make precise representation updates. To tackle this issue, we propose a new method called Temporal Graph Network for continuous-time dynamic Event sequence (TGNE) with a structure-aware message constructor to update node representation with complex event subgraph, by treating message construction and delivery as a message-passing process, in this way, the message constructor can be formalized as a graph neural network layer. TGNE extends the input of CTDG methods to subgraphs with complex structures and preserves more information in message delivery. Extensive experiments demonstrate that the proposed method can achieve competitive performance on traditional tasks on bipartite graphs and event sequence learning tasks on heterogeneous graphs.</p></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705124010864\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124010864","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Temporal Graph Network for continuous-time dynamic event sequence
Continuous-Time Dynamic Graph (CTDG) methods have shown their superior ability in learning representations for dynamic graph-structured data, the methods split the sequential updating process into discrete batches to reduce the computation costs, as a result, the message constructor in existing CTDG methods cannot be optimized by gradient descent and is designed to be parameter-free. In particular, this layer fails to embed complex event subgraphs and ignores the structure information, while most real-world events are structured and complex. For example, a paper publication event in an academic graph contains different relations like authorship and citations. Furthermore, the corresponding nodes could not receive position-wise messages to make precise representation updates. To tackle this issue, we propose a new method called Temporal Graph Network for continuous-time dynamic Event sequence (TGNE) with a structure-aware message constructor to update node representation with complex event subgraph, by treating message construction and delivery as a message-passing process, in this way, the message constructor can be formalized as a graph neural network layer. TGNE extends the input of CTDG methods to subgraphs with complex structures and preserves more information in message delivery. Extensive experiments demonstrate that the proposed method can achieve competitive performance on traditional tasks on bipartite graphs and event sequence learning tasks on heterogeneous graphs.
期刊介绍:
Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.