多相 STF/Kevlar 复合材料冲击能量吸收机制的介观有限元预测方法

IF 6.3 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Composite Structures Pub Date : 2024-09-02 DOI:10.1016/j.compstruct.2024.118554
{"title":"多相 STF/Kevlar 复合材料冲击能量吸收机制的介观有限元预测方法","authors":"","doi":"10.1016/j.compstruct.2024.118554","DOIUrl":null,"url":null,"abstract":"<div><p>Shear-thickening fluids (STFs) effectively enhance the impact-energy absorption of Kevlar fabrics and offer an extensive range of applications for human-safety protection. To precisely depict the impact-energy absorption mechanism and stress transfer behavior of multiphase STF/Kevlar composite fabrics under high strain rates, this study introduces a yarn-interface-friction constitutive model that accounts for the strain rate-thickening effect of STFs. The model is incorporated into a mesoscale numerical simulation to enhance computational accuracy. Theoretical models (impact-pit morphology, yarn-strain, and fabric-strain energy models) are employed to evaluate the off-plane displacement, strain distribution, and impact-energy absorption during impact imprint tests. The established simulation model shows high similarity (0.99) to the impact imprint profile curve and reveals that the strain energy and interfacial friction energy of the composite fabrics contribute primarily to energy dissipation during the impact process. Furthermore, in all specimens, C-STF/Kevlar (CNTs reinforced STF/Kevlar) exhibits reduced off-plane displacement, increased primary-yarn stress, and a higher capacity for impact kinetic-energy absorption. The proposed interface-friction constitutive model can accurately predict the deformation and energy absorption levels of the composite fabrics at various strain rates, thereby offering effective simulation guidance for the preliminary design of composite fabrics.</p></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0263822324006822/pdfft?md5=d34d5b1979ee85246e60e32f745be2bf&pid=1-s2.0-S0263822324006822-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Mesoscopic finite-element prediction method for impact-energy absorption mechanism of multiphase STF/Kevlar composite fabric\",\"authors\":\"\",\"doi\":\"10.1016/j.compstruct.2024.118554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Shear-thickening fluids (STFs) effectively enhance the impact-energy absorption of Kevlar fabrics and offer an extensive range of applications for human-safety protection. To precisely depict the impact-energy absorption mechanism and stress transfer behavior of multiphase STF/Kevlar composite fabrics under high strain rates, this study introduces a yarn-interface-friction constitutive model that accounts for the strain rate-thickening effect of STFs. The model is incorporated into a mesoscale numerical simulation to enhance computational accuracy. Theoretical models (impact-pit morphology, yarn-strain, and fabric-strain energy models) are employed to evaluate the off-plane displacement, strain distribution, and impact-energy absorption during impact imprint tests. The established simulation model shows high similarity (0.99) to the impact imprint profile curve and reveals that the strain energy and interfacial friction energy of the composite fabrics contribute primarily to energy dissipation during the impact process. Furthermore, in all specimens, C-STF/Kevlar (CNTs reinforced STF/Kevlar) exhibits reduced off-plane displacement, increased primary-yarn stress, and a higher capacity for impact kinetic-energy absorption. The proposed interface-friction constitutive model can accurately predict the deformation and energy absorption levels of the composite fabrics at various strain rates, thereby offering effective simulation guidance for the preliminary design of composite fabrics.</p></div>\",\"PeriodicalId\":281,\"journal\":{\"name\":\"Composite Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0263822324006822/pdfft?md5=d34d5b1979ee85246e60e32f745be2bf&pid=1-s2.0-S0263822324006822-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263822324006822\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324006822","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

剪切增稠流体(STF)可有效增强凯夫拉纤维的冲击能量吸收能力,在人体安全防护领域具有广泛的应用前景。为了精确描述高应变速率下多相 STF/Kevlar 复合织物的冲击能量吸收机制和应力传递行为,本研究引入了一个纱线-界面-摩擦构成模型,该模型考虑了 STF 的应变速率增厚效应。该模型被纳入中尺度数值模拟,以提高计算精度。采用理论模型(冲击坑形态、纱线-应变和织物-应变能模型)来评估冲击印痕试验过程中的平面外位移、应变分布和冲击能吸收。所建立的模拟模型与冲击印痕轮廓曲线具有很高的相似度(0.99),并揭示了复合材料织物的应变能和界面摩擦能在冲击过程中对能量耗散的主要贡献。此外,在所有试样中,C-STF/Kevlar(CNTs 增强 STF/Kevlar)都表现出较小的平面外位移、较高的原纱应力和较强的冲击动能吸收能力。所提出的界面摩擦构成模型可以准确预测复合材料织物在不同应变速率下的变形和能量吸收水平,从而为复合材料织物的初步设计提供有效的模拟指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mesoscopic finite-element prediction method for impact-energy absorption mechanism of multiphase STF/Kevlar composite fabric

Shear-thickening fluids (STFs) effectively enhance the impact-energy absorption of Kevlar fabrics and offer an extensive range of applications for human-safety protection. To precisely depict the impact-energy absorption mechanism and stress transfer behavior of multiphase STF/Kevlar composite fabrics under high strain rates, this study introduces a yarn-interface-friction constitutive model that accounts for the strain rate-thickening effect of STFs. The model is incorporated into a mesoscale numerical simulation to enhance computational accuracy. Theoretical models (impact-pit morphology, yarn-strain, and fabric-strain energy models) are employed to evaluate the off-plane displacement, strain distribution, and impact-energy absorption during impact imprint tests. The established simulation model shows high similarity (0.99) to the impact imprint profile curve and reveals that the strain energy and interfacial friction energy of the composite fabrics contribute primarily to energy dissipation during the impact process. Furthermore, in all specimens, C-STF/Kevlar (CNTs reinforced STF/Kevlar) exhibits reduced off-plane displacement, increased primary-yarn stress, and a higher capacity for impact kinetic-energy absorption. The proposed interface-friction constitutive model can accurately predict the deformation and energy absorption levels of the composite fabrics at various strain rates, thereby offering effective simulation guidance for the preliminary design of composite fabrics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composite Structures
Composite Structures 工程技术-材料科学:复合
CiteScore
12.00
自引率
12.70%
发文量
1246
审稿时长
78 days
期刊介绍: The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials. The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.
期刊最新文献
Low-velocity impact resistance behaviors of bionic hybrid-helicoidal composite laminates Geometrically nonlinear analysis of layered beams using symbolic approach Translaminar fracture toughness characterisation for a glass fibre/polyamide 6 laminated composite by a novel approach based on fictitious material concept Optimization design for hole geometries and fiber steering of composite laminates with a hole A novel advanced block assembly method with 3D printed channel systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1