基于全双工的碰撞检测,增强 V2X 侧向链路自主模式

IF 4.4 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Computer Networks Pub Date : 2024-09-02 DOI:10.1016/j.comnet.2024.110763
{"title":"基于全双工的碰撞检测,增强 V2X 侧向链路自主模式","authors":"","doi":"10.1016/j.comnet.2024.110763","DOIUrl":null,"url":null,"abstract":"<div><p>The Third Generation Partnership Project (3GPP) recently introduced the fifth-generation (5G) new radio (NR) sidelink to enable vehicle-to-everything (V2X) communications supporting advanced safety services. Nevertheless, improvements over the previous generation still pose challenges to meet the reliability and latency requirements of V2X communications, particularly in the allocation of distributed resources, i.e., Mode 2. In Mode 2, vehicles autonomously select radio resources for their message transmissions and can maintain the selected resources for a given reservation period to efficiently handle periodic data traffic. However, potential collisions during this period may remain undetected due to half-duplex communications and unacknowledged broadcast transmissions, resulting in persistent message losses and posing a threat to road safety. This paper aims to improve the 5G NR-V2X sidelink for systems beyond 5G-Advanced by exploiting full-duplex transceivers. We propose a novel medium access control (MAC) scheme where vehicles can detect collisions while transmitting, dynamically adapt the collision detection threshold according to the measured channel load, and react to detected collisions through appropriate resource reselection and retransmission procedures. Extensive simulations conducted under various settings show that this MAC scheme brings substantial performance gains in terms of reliability and latency, compared to the current legacy Mode 2 procedure and a benchmark full-duplex scheme from the literature.</p></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1389128624005954/pdfft?md5=085f21c51de1dac32769fcfbac7e84ff&pid=1-s2.0-S1389128624005954-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Full duplex based collision detection to enhance the V2X sidelink autonomous mode\",\"authors\":\"\",\"doi\":\"10.1016/j.comnet.2024.110763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Third Generation Partnership Project (3GPP) recently introduced the fifth-generation (5G) new radio (NR) sidelink to enable vehicle-to-everything (V2X) communications supporting advanced safety services. Nevertheless, improvements over the previous generation still pose challenges to meet the reliability and latency requirements of V2X communications, particularly in the allocation of distributed resources, i.e., Mode 2. In Mode 2, vehicles autonomously select radio resources for their message transmissions and can maintain the selected resources for a given reservation period to efficiently handle periodic data traffic. However, potential collisions during this period may remain undetected due to half-duplex communications and unacknowledged broadcast transmissions, resulting in persistent message losses and posing a threat to road safety. This paper aims to improve the 5G NR-V2X sidelink for systems beyond 5G-Advanced by exploiting full-duplex transceivers. We propose a novel medium access control (MAC) scheme where vehicles can detect collisions while transmitting, dynamically adapt the collision detection threshold according to the measured channel load, and react to detected collisions through appropriate resource reselection and retransmission procedures. Extensive simulations conducted under various settings show that this MAC scheme brings substantial performance gains in terms of reliability and latency, compared to the current legacy Mode 2 procedure and a benchmark full-duplex scheme from the literature.</p></div>\",\"PeriodicalId\":50637,\"journal\":{\"name\":\"Computer Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1389128624005954/pdfft?md5=085f21c51de1dac32769fcfbac7e84ff&pid=1-s2.0-S1389128624005954-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389128624005954\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128624005954","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

第三代合作伙伴计划(3GPP)最近推出了第五代(5G)新无线电(NR)侧链路,以实现支持高级安全服务的车对物(V2X)通信。然而,与上一代产品相比,5G 在可靠性和延迟方面的改进仍对满足 V2X 通信的要求提出了挑战,特别是在分布式资源分配(即模式 2)方面。在模式 2 中,车辆自主选择用于信息传输的无线电资源,并在给定的保留期内保持所选资源,以有效处理周期性数据流量。然而,由于半双工通信和未确认的广播传输,在此期间潜在的碰撞可能仍未被发现,从而导致持续的信息丢失,对道路安全构成威胁。本文旨在利用全双工收发器改进 5G NR-V2X 侧向链路,使其适用于 5G-Advanced 以上的系统。我们提出了一种新型介质访问控制(MAC)方案,车辆可以在传输过程中检测碰撞,根据测量的信道负载动态调整碰撞检测阈值,并通过适当的资源重选和重传程序对检测到的碰撞做出反应。在各种设置下进行的大量仿真表明,与当前的传统模式 2 程序和文献中的基准全双工方案相比,这种 MAC 方案在可靠性和延迟方面带来了显著的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Full duplex based collision detection to enhance the V2X sidelink autonomous mode

The Third Generation Partnership Project (3GPP) recently introduced the fifth-generation (5G) new radio (NR) sidelink to enable vehicle-to-everything (V2X) communications supporting advanced safety services. Nevertheless, improvements over the previous generation still pose challenges to meet the reliability and latency requirements of V2X communications, particularly in the allocation of distributed resources, i.e., Mode 2. In Mode 2, vehicles autonomously select radio resources for their message transmissions and can maintain the selected resources for a given reservation period to efficiently handle periodic data traffic. However, potential collisions during this period may remain undetected due to half-duplex communications and unacknowledged broadcast transmissions, resulting in persistent message losses and posing a threat to road safety. This paper aims to improve the 5G NR-V2X sidelink for systems beyond 5G-Advanced by exploiting full-duplex transceivers. We propose a novel medium access control (MAC) scheme where vehicles can detect collisions while transmitting, dynamically adapt the collision detection threshold according to the measured channel load, and react to detected collisions through appropriate resource reselection and retransmission procedures. Extensive simulations conducted under various settings show that this MAC scheme brings substantial performance gains in terms of reliability and latency, compared to the current legacy Mode 2 procedure and a benchmark full-duplex scheme from the literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Networks
Computer Networks 工程技术-电信学
CiteScore
10.80
自引率
3.60%
发文量
434
审稿时长
8.6 months
期刊介绍: Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.
期刊最新文献
SD-MDN-TM: A traceback and mitigation integrated mechanism against DDoS attacks with IP spoofing On the aggregation of FIBs at ICN routers using routing strategy Protecting unauthenticated messages in LTE/5G mobile networks: A two-level Hierarchical Identity-Based Signature (HIBS) solution A two-step linear programming approach for repeater placement in large-scale quantum networks Network traffic prediction based on PSO-LightGBM-TM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1