增强农业能力:水稻锌生物强化的前景

IF 6.1 2区 生物学 Q1 PLANT SCIENCES Plant Physiology and Biochemistry Pub Date : 2024-08-30 DOI:10.1016/j.plaphy.2024.109085
{"title":"增强农业能力:水稻锌生物强化的前景","authors":"","doi":"10.1016/j.plaphy.2024.109085","DOIUrl":null,"url":null,"abstract":"<div><p>Zinc (Zn) plays a crucial role in metabolism in both plant and animal life. Zn deficiency is a worldwide problem that has recently gotten worse. This micronutrient shortage can be largely attributed to eating foods that are poor in zinc. If biofortification methods were widely used, Zn enrichment of the organ or tissue of interest would increase dramatically. However, Zn absorption mechanisms in rice plants must be understood on a fundamental level before these methods can be used effectively. Plant systems' Zn transporters and metal chelators play a major role in regulating this intricate physiological characteristic. The Zn efficiency of specific species is affected by a variety of factors, including the plant's growth stage, edaphic conditions, the time of year, and more. Both old and new ways of breeding plants can be used for biofortification. We have highlighted the significance of recombinant and genetic approaches to biofortifying in rice. In this review, we have the metabolic role of zinc in rice, and the different transporter families involved in the transportation of zinc in rice. We have also discussed the combined approaches of agronomic and genetic in zinc biofortification in rice and potential outcomes and future predictions.</p></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0981942824007538/pdfft?md5=b1c3074761f411d7968c25e401aeeeca&pid=1-s2.0-S0981942824007538-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Empowering agriculture: The promise of zinc biofortification in rice\",\"authors\":\"\",\"doi\":\"10.1016/j.plaphy.2024.109085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Zinc (Zn) plays a crucial role in metabolism in both plant and animal life. Zn deficiency is a worldwide problem that has recently gotten worse. This micronutrient shortage can be largely attributed to eating foods that are poor in zinc. If biofortification methods were widely used, Zn enrichment of the organ or tissue of interest would increase dramatically. However, Zn absorption mechanisms in rice plants must be understood on a fundamental level before these methods can be used effectively. Plant systems' Zn transporters and metal chelators play a major role in regulating this intricate physiological characteristic. The Zn efficiency of specific species is affected by a variety of factors, including the plant's growth stage, edaphic conditions, the time of year, and more. Both old and new ways of breeding plants can be used for biofortification. We have highlighted the significance of recombinant and genetic approaches to biofortifying in rice. In this review, we have the metabolic role of zinc in rice, and the different transporter families involved in the transportation of zinc in rice. We have also discussed the combined approaches of agronomic and genetic in zinc biofortification in rice and potential outcomes and future predictions.</p></div>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0981942824007538/pdfft?md5=b1c3074761f411d7968c25e401aeeeca&pid=1-s2.0-S0981942824007538-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0981942824007538\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942824007538","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

锌(Zn)在动植物的新陈代谢中起着至关重要的作用。锌缺乏症是一个世界性问题,近来愈演愈烈。这种微量营养素的缺乏在很大程度上可归因于食用含锌量低的食物。如果生物强化方法得到广泛应用,相关器官或组织的锌富集程度将大幅提高。然而,在有效使用这些方法之前,必须从根本上了解水稻植物的锌吸收机制。植物系统的锌转运体和金属螯合剂在调节这一复杂的生理特性方面发挥着重要作用。特定物种的锌效率受多种因素影响,包括植物的生长阶段、土壤条件、一年中的时间等等。育种植物的新旧方法都可用于生物强化。我们强调了重组和遗传方法对水稻生物强化的重要意义。在这篇综述中,我们介绍了锌在水稻中的代谢作用,以及参与水稻锌转运的不同转运体家族。我们还讨论了水稻锌生物强化中的农艺和遗传相结合的方法,以及潜在的结果和未来的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Empowering agriculture: The promise of zinc biofortification in rice

Zinc (Zn) plays a crucial role in metabolism in both plant and animal life. Zn deficiency is a worldwide problem that has recently gotten worse. This micronutrient shortage can be largely attributed to eating foods that are poor in zinc. If biofortification methods were widely used, Zn enrichment of the organ or tissue of interest would increase dramatically. However, Zn absorption mechanisms in rice plants must be understood on a fundamental level before these methods can be used effectively. Plant systems' Zn transporters and metal chelators play a major role in regulating this intricate physiological characteristic. The Zn efficiency of specific species is affected by a variety of factors, including the plant's growth stage, edaphic conditions, the time of year, and more. Both old and new ways of breeding plants can be used for biofortification. We have highlighted the significance of recombinant and genetic approaches to biofortifying in rice. In this review, we have the metabolic role of zinc in rice, and the different transporter families involved in the transportation of zinc in rice. We have also discussed the combined approaches of agronomic and genetic in zinc biofortification in rice and potential outcomes and future predictions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
期刊最新文献
Metabolomics combined with proteomics reveals phytotoxic effects of norfloxacin under drought stress on Oryza sativa The effect of nitrosative stress on histone H3 and H4 acetylation in Phytophthora infestans life cycle Responses of Brassica napus to soil cadmium under elevated CO2 concentration based on rhizosphere microbiome, root transcriptome and metabolome The Vacuolar H+-ATPase subunit C is involved in oligogalacturonide (OG) internalization and OG-triggered immunity Functional impacts of PtrMYB203 on phenylpropanoid pathway regulation and wood properties in hybrid poplar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1