在多孔碳化硅(rGO)PDC 中原位形成碳化硅纳米线,实现稳健性和热管理的平衡提升

IF 12.7 1区 材料科学 Q1 ENGINEERING, MULTIDISCIPLINARY Composites Part B: Engineering Pub Date : 2024-09-10 DOI:10.1016/j.compositesb.2024.111828
{"title":"在多孔碳化硅(rGO)PDC 中原位形成碳化硅纳米线,实现稳健性和热管理的平衡提升","authors":"","doi":"10.1016/j.compositesb.2024.111828","DOIUrl":null,"url":null,"abstract":"<div><p>With ongoing development of rocket combustion and hypersonic vehicles, urgent needs are created on thermal structures, protection and thermal insulating materials, particularly balanced enhancement of mechanical and antioxidant properties. Herein, we propose a design strategy to construct continuous in-situ formed SiOC nanowires (SiOCnws)-toughened self-healing SiO<sub><em>x</em></sub> coatings into porous SiC(rGO) PDCs. The key production technique is re-pyrolyzing coassembled flexible precursors/SiC(rGO)<sub>p</sub>/graphite blends, followed by decarbonization and silica sol impregnation-sintering (SIS) process. Well-distributed hierarchical pores are built to heighten thermal insulation properties by the integrated decarburization of graphite coupled with free carbon. High-yield SiOCnws, with high surface activity, are first cultivated via graphite-assisted vapor-solid (VS) mechanism without transition metal catalysts. They interconnect to form intricate 3D meshwork by graphite-assisted melt-spinning and have good compatibility with ceramic matrix and SiO<sub><em>x</em></sub> coatings by carbothermal reaction. Hierarchically porous SiOCnws/SiC(rGO)<sub>40</sub><sub>%</sub> PDCs after once SIS exhibit favorable thermal conductivity of 0.27 W‧m<sup>−1</sup>‧K<sup>−1</sup> and exceptional high robustness (compressive strength: 39.02 MPa, hardness: 10.27 GPa). Such composites display low reflection loss of −48.14 dB at 11.22 GHz and even good structural stability at about 1300 °C as burned by a butane blowtorch for 3600 s, shedding light on competitive components for uses in thermal protection fields.</p></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":null,"pages":null},"PeriodicalIF":12.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ formed silicon oxycarbide nanowires into porous SiC(rGO) PDCs enable balanced enhancement of robustness and thermal management\",\"authors\":\"\",\"doi\":\"10.1016/j.compositesb.2024.111828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With ongoing development of rocket combustion and hypersonic vehicles, urgent needs are created on thermal structures, protection and thermal insulating materials, particularly balanced enhancement of mechanical and antioxidant properties. Herein, we propose a design strategy to construct continuous in-situ formed SiOC nanowires (SiOCnws)-toughened self-healing SiO<sub><em>x</em></sub> coatings into porous SiC(rGO) PDCs. The key production technique is re-pyrolyzing coassembled flexible precursors/SiC(rGO)<sub>p</sub>/graphite blends, followed by decarbonization and silica sol impregnation-sintering (SIS) process. Well-distributed hierarchical pores are built to heighten thermal insulation properties by the integrated decarburization of graphite coupled with free carbon. High-yield SiOCnws, with high surface activity, are first cultivated via graphite-assisted vapor-solid (VS) mechanism without transition metal catalysts. They interconnect to form intricate 3D meshwork by graphite-assisted melt-spinning and have good compatibility with ceramic matrix and SiO<sub><em>x</em></sub> coatings by carbothermal reaction. Hierarchically porous SiOCnws/SiC(rGO)<sub>40</sub><sub>%</sub> PDCs after once SIS exhibit favorable thermal conductivity of 0.27 W‧m<sup>−1</sup>‧K<sup>−1</sup> and exceptional high robustness (compressive strength: 39.02 MPa, hardness: 10.27 GPa). Such composites display low reflection loss of −48.14 dB at 11.22 GHz and even good structural stability at about 1300 °C as burned by a butane blowtorch for 3600 s, shedding light on competitive components for uses in thermal protection fields.</p></div>\",\"PeriodicalId\":10660,\"journal\":{\"name\":\"Composites Part B: Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part B: Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359836824006401\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836824006401","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着火箭燃烧和高超音速飞行器的不断发展,对热结构、保护和隔热材料提出了迫切的需求,尤其是在提高机械性能和抗氧化性能方面。在此,我们提出了一种在多孔 SiC(rGO)PDC 中构建连续原位成型 SiOC 纳米线(SiOCnws)-增韧自修复 SiOx 涂层的设计策略。关键的生产技术是重新热解共组装柔性前驱体/SiC(rGO)p/石墨混合物,然后进行脱碳和硅溶胶浸渍-烧结(SIS)工艺。通过对石墨和游离碳进行综合脱碳,形成了分布均匀的分层孔隙,从而提高了隔热性能。首先在不使用过渡金属催化剂的情况下,通过石墨辅助气固(VS)机制培养出具有高表面活性的高产 SiOCnws。它们通过石墨辅助熔融纺丝相互连接形成复杂的三维网状结构,并通过碳热反应与陶瓷基体和氧化硅涂层具有良好的兼容性。经过一次 SIS 后的分层多孔 SiOCnws/SiC(rGO)40%PDC 具有 0.27 W‧m-1‧K-1 的良好热导率和超高的坚固性(抗压强度:39.02 MPa,硬度:10.27 GPa)。这种复合材料在 11.22 GHz 时的反射损耗低至 -48.14 dB,甚至在丁烷喷灯灼烧约 1300 °C 3600 秒后仍具有良好的结构稳定性,为热保护领域的竞争性元件提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In-situ formed silicon oxycarbide nanowires into porous SiC(rGO) PDCs enable balanced enhancement of robustness and thermal management

With ongoing development of rocket combustion and hypersonic vehicles, urgent needs are created on thermal structures, protection and thermal insulating materials, particularly balanced enhancement of mechanical and antioxidant properties. Herein, we propose a design strategy to construct continuous in-situ formed SiOC nanowires (SiOCnws)-toughened self-healing SiOx coatings into porous SiC(rGO) PDCs. The key production technique is re-pyrolyzing coassembled flexible precursors/SiC(rGO)p/graphite blends, followed by decarbonization and silica sol impregnation-sintering (SIS) process. Well-distributed hierarchical pores are built to heighten thermal insulation properties by the integrated decarburization of graphite coupled with free carbon. High-yield SiOCnws, with high surface activity, are first cultivated via graphite-assisted vapor-solid (VS) mechanism without transition metal catalysts. They interconnect to form intricate 3D meshwork by graphite-assisted melt-spinning and have good compatibility with ceramic matrix and SiOx coatings by carbothermal reaction. Hierarchically porous SiOCnws/SiC(rGO)40% PDCs after once SIS exhibit favorable thermal conductivity of 0.27 W‧m−1‧K−1 and exceptional high robustness (compressive strength: 39.02 MPa, hardness: 10.27 GPa). Such composites display low reflection loss of −48.14 dB at 11.22 GHz and even good structural stability at about 1300 °C as burned by a butane blowtorch for 3600 s, shedding light on competitive components for uses in thermal protection fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Part B: Engineering
Composites Part B: Engineering 工程技术-材料科学:复合
CiteScore
24.40
自引率
11.50%
发文量
784
审稿时长
21 days
期刊介绍: Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development. The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.
期刊最新文献
Stretchable supramolecular hydrogel with instantaneous self-healing for electromagnetic interference shielding control and sensing Enhancing the fracture toughness of aerospace-grade carbon fibre/epoxy composites by interlaying surface-activated low-melt polyaryletherketone (LMPAEK) meshes A hydro-thermo-chemo-mechanical model for slag-blended cementitious systems at early ages In-situ formed silicon oxycarbide nanowires into porous SiC(rGO) PDCs enable balanced enhancement of robustness and thermal management Electrical resistance based residual strength prediction method for SiC/SiC mini-composites after stress-free oxidation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1