Qiling Zhang , Yuling Liu , Ruying Tang , Shasha Kong , Dan Lv , Hui Li , Hongjun Yang , Longfei Lin
{"title":"肠道微生物群及其代谢产物:中药非淀粉多糖延缓衰老和预防老年相关疾病的潜在途径--综述","authors":"Qiling Zhang , Yuling Liu , Ruying Tang , Shasha Kong , Dan Lv , Hui Li , Hongjun Yang , Longfei Lin","doi":"10.1016/j.carpta.2024.100567","DOIUrl":null,"url":null,"abstract":"<div><p>Unhealthy aging causes the development of various diseases, which makes intervening in key targets an important breakthrough in the development of new drugs to delay aging and prevent age-related diseases. Regulating gut microbiota has become a potential intervention pathway for anti-aging. Modern studies have shown that polysaccharides, the main active ingredients of traditional Chinese medicine (TCM), have multi-target advantages in the mechanisms of action of anti-aging. Non-starch polysaccharides are degraded by the gut microbiota in vivo to produce short-chain fatty acids to enable the local and systemic physiological functions have also been confirmed, but the researches on how TCM polysaccharides can exert anti-aging by the regulation of the gut microbiota and its metabolites lack systematic review. This review describes changes in the gut microbiota with age, and how it causes the pathogenesis of age-related diseases. It summarizes the effects of TCM polysaccharides in interfering with aging, the process of regulating gut microbiota to exert anti-ageing activity through the mediation of AMPK, Nrf2, and NF-κB signaling pathways and other potential intervention pathways. Finally, this review summarizes laws that changes in molecular weight and monosaccharide composition affect the role of polysaccharides in the intestinal microenvironment thereby altering the function of gut microbiota.</p></div>","PeriodicalId":100213,"journal":{"name":"Carbohydrate Polymer Technologies and Applications","volume":"8 ","pages":"Article 100567"},"PeriodicalIF":6.2000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666893924001476/pdfft?md5=99ce0fb94180e2b118b3880650576c9c&pid=1-s2.0-S2666893924001476-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Gut microbiota and its metabolites: A potential approach for traditional Chinese medicine-derived non-starch polysaccharides to delay aging and prevent age-related diseases–A review\",\"authors\":\"Qiling Zhang , Yuling Liu , Ruying Tang , Shasha Kong , Dan Lv , Hui Li , Hongjun Yang , Longfei Lin\",\"doi\":\"10.1016/j.carpta.2024.100567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Unhealthy aging causes the development of various diseases, which makes intervening in key targets an important breakthrough in the development of new drugs to delay aging and prevent age-related diseases. Regulating gut microbiota has become a potential intervention pathway for anti-aging. Modern studies have shown that polysaccharides, the main active ingredients of traditional Chinese medicine (TCM), have multi-target advantages in the mechanisms of action of anti-aging. Non-starch polysaccharides are degraded by the gut microbiota in vivo to produce short-chain fatty acids to enable the local and systemic physiological functions have also been confirmed, but the researches on how TCM polysaccharides can exert anti-aging by the regulation of the gut microbiota and its metabolites lack systematic review. This review describes changes in the gut microbiota with age, and how it causes the pathogenesis of age-related diseases. It summarizes the effects of TCM polysaccharides in interfering with aging, the process of regulating gut microbiota to exert anti-ageing activity through the mediation of AMPK, Nrf2, and NF-κB signaling pathways and other potential intervention pathways. Finally, this review summarizes laws that changes in molecular weight and monosaccharide composition affect the role of polysaccharides in the intestinal microenvironment thereby altering the function of gut microbiota.</p></div>\",\"PeriodicalId\":100213,\"journal\":{\"name\":\"Carbohydrate Polymer Technologies and Applications\",\"volume\":\"8 \",\"pages\":\"Article 100567\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666893924001476/pdfft?md5=99ce0fb94180e2b118b3880650576c9c&pid=1-s2.0-S2666893924001476-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbohydrate Polymer Technologies and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666893924001476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymer Technologies and Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666893924001476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Gut microbiota and its metabolites: A potential approach for traditional Chinese medicine-derived non-starch polysaccharides to delay aging and prevent age-related diseases–A review
Unhealthy aging causes the development of various diseases, which makes intervening in key targets an important breakthrough in the development of new drugs to delay aging and prevent age-related diseases. Regulating gut microbiota has become a potential intervention pathway for anti-aging. Modern studies have shown that polysaccharides, the main active ingredients of traditional Chinese medicine (TCM), have multi-target advantages in the mechanisms of action of anti-aging. Non-starch polysaccharides are degraded by the gut microbiota in vivo to produce short-chain fatty acids to enable the local and systemic physiological functions have also been confirmed, but the researches on how TCM polysaccharides can exert anti-aging by the regulation of the gut microbiota and its metabolites lack systematic review. This review describes changes in the gut microbiota with age, and how it causes the pathogenesis of age-related diseases. It summarizes the effects of TCM polysaccharides in interfering with aging, the process of regulating gut microbiota to exert anti-ageing activity through the mediation of AMPK, Nrf2, and NF-κB signaling pathways and other potential intervention pathways. Finally, this review summarizes laws that changes in molecular weight and monosaccharide composition affect the role of polysaccharides in the intestinal microenvironment thereby altering the function of gut microbiota.