{"title":"地下滴灌施肥条件下磷肥类型和滴管深度对根系和土壤养分分布、养分吸收以及玉米产量的影响","authors":"Yanhong Guo , Zhen Wang , Jiusheng Li","doi":"10.1016/j.fcr.2024.109585","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>Subsurface drip irrigation can potentially increase nutrient uptake by altering the spatial distribution of nutrients and roots, but the efficiency enhancement potential of different phosphorus (P) sources combined with varying dripline depths still requires further evaluation.</p></div><div><h3>Methods</h3><p>We established a 2-year field experiment with spring maize in 2021 and 2022 to determine the regulatory effects of three P sources [P1, monoammonium phosphate (MAP); P2, ammonium polyphosphate (APP); and P0, no P] and three dripline depths (D0, surface drip irrigation, 0 cm; D15, subsurface at 15 cm depth; and D30, subsurface at 30 cm depth) on the soil NO<sub>3</sub>-N, NH<sub>4</sub>-N and Olsen-P distribution, root distribution, nitrogen (N) fertilizer partial factor productivity (PFPN) and P use efficiency (PUE), and grain yield.</p></div><div><h3>Results</h3><p>We found a significant coupling effect between the P source and dripline depth, both of which significantly impacted soil nutrients and root distribution, grain yield, PFPN, and PUE. In P1D15 and P2D15, the highest soil NO<sub>3</sub>-N and Olsen-P contents were observed at soil depths of 0–30 and 10–20 cm and at 0–30 and 10–30 cm, respectively. Similarly, in P1D30 and P2D30, which were 20–40 and 20–40 cm, and 20–40 and 30–60 cm, respectively. Compared to the other treatments, P2D15 and P1D30 exhibited considerable increases in root length density at the 30–60 cm soil depth of 37∼52 % and 28∼58 %, respectively. Regardless of the dripline depth, P0 resulted in the lowest yield during both growing seasons. P1D30 and P2D15 were found to be the optimal combinations for achieving higher grain yield, PFPN, and PUE, as they were able to achieve a high degree of coordination between soil available N and Olsen-P, as well as root distribution.</p></div><div><h3>Conclusions</h3><p>The recommended approach for optimizing nutrient and root spatial distributions under subsurface drip irrigation systems involves the use of poly-P fertilizer (APP) in conjunction with shallow dripline depth and ortho-P fertilizer (MAP) paired with deep dripline depth, which provides valuable guidance for co-fertigation practices involving N and P fertilizers.</p></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":"318 ","pages":"Article 109585"},"PeriodicalIF":5.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of phosphorus fertilizer type and dripline depth on root and soil nutrient distribution, nutrient uptake, and maize yield under subsurface drip fertigation\",\"authors\":\"Yanhong Guo , Zhen Wang , Jiusheng Li\",\"doi\":\"10.1016/j.fcr.2024.109585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Context</h3><p>Subsurface drip irrigation can potentially increase nutrient uptake by altering the spatial distribution of nutrients and roots, but the efficiency enhancement potential of different phosphorus (P) sources combined with varying dripline depths still requires further evaluation.</p></div><div><h3>Methods</h3><p>We established a 2-year field experiment with spring maize in 2021 and 2022 to determine the regulatory effects of three P sources [P1, monoammonium phosphate (MAP); P2, ammonium polyphosphate (APP); and P0, no P] and three dripline depths (D0, surface drip irrigation, 0 cm; D15, subsurface at 15 cm depth; and D30, subsurface at 30 cm depth) on the soil NO<sub>3</sub>-N, NH<sub>4</sub>-N and Olsen-P distribution, root distribution, nitrogen (N) fertilizer partial factor productivity (PFPN) and P use efficiency (PUE), and grain yield.</p></div><div><h3>Results</h3><p>We found a significant coupling effect between the P source and dripline depth, both of which significantly impacted soil nutrients and root distribution, grain yield, PFPN, and PUE. In P1D15 and P2D15, the highest soil NO<sub>3</sub>-N and Olsen-P contents were observed at soil depths of 0–30 and 10–20 cm and at 0–30 and 10–30 cm, respectively. Similarly, in P1D30 and P2D30, which were 20–40 and 20–40 cm, and 20–40 and 30–60 cm, respectively. Compared to the other treatments, P2D15 and P1D30 exhibited considerable increases in root length density at the 30–60 cm soil depth of 37∼52 % and 28∼58 %, respectively. Regardless of the dripline depth, P0 resulted in the lowest yield during both growing seasons. P1D30 and P2D15 were found to be the optimal combinations for achieving higher grain yield, PFPN, and PUE, as they were able to achieve a high degree of coordination between soil available N and Olsen-P, as well as root distribution.</p></div><div><h3>Conclusions</h3><p>The recommended approach for optimizing nutrient and root spatial distributions under subsurface drip irrigation systems involves the use of poly-P fertilizer (APP) in conjunction with shallow dripline depth and ortho-P fertilizer (MAP) paired with deep dripline depth, which provides valuable guidance for co-fertigation practices involving N and P fertilizers.</p></div>\",\"PeriodicalId\":12143,\"journal\":{\"name\":\"Field Crops Research\",\"volume\":\"318 \",\"pages\":\"Article 109585\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Field Crops Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378429024003381\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Field Crops Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378429024003381","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Effects of phosphorus fertilizer type and dripline depth on root and soil nutrient distribution, nutrient uptake, and maize yield under subsurface drip fertigation
Context
Subsurface drip irrigation can potentially increase nutrient uptake by altering the spatial distribution of nutrients and roots, but the efficiency enhancement potential of different phosphorus (P) sources combined with varying dripline depths still requires further evaluation.
Methods
We established a 2-year field experiment with spring maize in 2021 and 2022 to determine the regulatory effects of three P sources [P1, monoammonium phosphate (MAP); P2, ammonium polyphosphate (APP); and P0, no P] and three dripline depths (D0, surface drip irrigation, 0 cm; D15, subsurface at 15 cm depth; and D30, subsurface at 30 cm depth) on the soil NO3-N, NH4-N and Olsen-P distribution, root distribution, nitrogen (N) fertilizer partial factor productivity (PFPN) and P use efficiency (PUE), and grain yield.
Results
We found a significant coupling effect between the P source and dripline depth, both of which significantly impacted soil nutrients and root distribution, grain yield, PFPN, and PUE. In P1D15 and P2D15, the highest soil NO3-N and Olsen-P contents were observed at soil depths of 0–30 and 10–20 cm and at 0–30 and 10–30 cm, respectively. Similarly, in P1D30 and P2D30, which were 20–40 and 20–40 cm, and 20–40 and 30–60 cm, respectively. Compared to the other treatments, P2D15 and P1D30 exhibited considerable increases in root length density at the 30–60 cm soil depth of 37∼52 % and 28∼58 %, respectively. Regardless of the dripline depth, P0 resulted in the lowest yield during both growing seasons. P1D30 and P2D15 were found to be the optimal combinations for achieving higher grain yield, PFPN, and PUE, as they were able to achieve a high degree of coordination between soil available N and Olsen-P, as well as root distribution.
Conclusions
The recommended approach for optimizing nutrient and root spatial distributions under subsurface drip irrigation systems involves the use of poly-P fertilizer (APP) in conjunction with shallow dripline depth and ortho-P fertilizer (MAP) paired with deep dripline depth, which provides valuable guidance for co-fertigation practices involving N and P fertilizers.
期刊介绍:
Field Crops Research is an international journal publishing scientific articles on:
√ experimental and modelling research at field, farm and landscape levels
on temperate and tropical crops and cropping systems,
with a focus on crop ecology and physiology, agronomy, and plant genetics and breeding.