{"title":"基于 TRNSYS 的多能源互补暖通空调系统性能模拟与能效分析","authors":"","doi":"10.1016/j.applthermaleng.2024.124378","DOIUrl":null,"url":null,"abstract":"<div><p>The failure rate and operating cost of the C-B (chiller-gas boiler) system, which has been in use for a long time, are increasing year by year, but there is a lack of reasonable programs and effective measures on how to retrofit the C-B system. In order to explore the prospect of ground-source heat pumps applied to the retrofit of C-B systems in HSCW (hot summer and cold winter) zone, this study designed a G-C-B (GSHP-Chiller-Boiler) system in a partial retrofit context and constructed a TRNSYS numerical simulation model of the retrofit system. Secondly, the performance and energy efficiency of the system is analyzed as well as different control strategies for the ground source heat pump cooling tower are discussed. Finally, the energy conversion efficiency of the chiller is compared based on the energy flow of the system. Studies have shown that the G-C-B system can achieve a seasonal performance factor of 5.3 during the cooling season and 4.1 during the heating season. Compared to the existing C-B system, year-round electricity consumption was reduced by 21 %, gas consumption by 92 %, and combined energy demand by 49.6 %. With the addition of GSHP, the energy conversion efficiency of the chiller has also increased by 21 %. The soil temperature of the G-C-B system increased by less than 0.5 °C after ten years of continuous operation. This paper can provide a valuable theoretical basis for the energy form modification of the C-B system in the HSCW zone.</p></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance simulation and energy efficiency analysis of multi-energy complementary HVAC system based on TRNSYS\",\"authors\":\"\",\"doi\":\"10.1016/j.applthermaleng.2024.124378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The failure rate and operating cost of the C-B (chiller-gas boiler) system, which has been in use for a long time, are increasing year by year, but there is a lack of reasonable programs and effective measures on how to retrofit the C-B system. In order to explore the prospect of ground-source heat pumps applied to the retrofit of C-B systems in HSCW (hot summer and cold winter) zone, this study designed a G-C-B (GSHP-Chiller-Boiler) system in a partial retrofit context and constructed a TRNSYS numerical simulation model of the retrofit system. Secondly, the performance and energy efficiency of the system is analyzed as well as different control strategies for the ground source heat pump cooling tower are discussed. Finally, the energy conversion efficiency of the chiller is compared based on the energy flow of the system. Studies have shown that the G-C-B system can achieve a seasonal performance factor of 5.3 during the cooling season and 4.1 during the heating season. Compared to the existing C-B system, year-round electricity consumption was reduced by 21 %, gas consumption by 92 %, and combined energy demand by 49.6 %. With the addition of GSHP, the energy conversion efficiency of the chiller has also increased by 21 %. The soil temperature of the G-C-B system increased by less than 0.5 °C after ten years of continuous operation. This paper can provide a valuable theoretical basis for the energy form modification of the C-B system in the HSCW zone.</p></div>\",\"PeriodicalId\":8201,\"journal\":{\"name\":\"Applied Thermal Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359431124020465\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431124020465","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Performance simulation and energy efficiency analysis of multi-energy complementary HVAC system based on TRNSYS
The failure rate and operating cost of the C-B (chiller-gas boiler) system, which has been in use for a long time, are increasing year by year, but there is a lack of reasonable programs and effective measures on how to retrofit the C-B system. In order to explore the prospect of ground-source heat pumps applied to the retrofit of C-B systems in HSCW (hot summer and cold winter) zone, this study designed a G-C-B (GSHP-Chiller-Boiler) system in a partial retrofit context and constructed a TRNSYS numerical simulation model of the retrofit system. Secondly, the performance and energy efficiency of the system is analyzed as well as different control strategies for the ground source heat pump cooling tower are discussed. Finally, the energy conversion efficiency of the chiller is compared based on the energy flow of the system. Studies have shown that the G-C-B system can achieve a seasonal performance factor of 5.3 during the cooling season and 4.1 during the heating season. Compared to the existing C-B system, year-round electricity consumption was reduced by 21 %, gas consumption by 92 %, and combined energy demand by 49.6 %. With the addition of GSHP, the energy conversion efficiency of the chiller has also increased by 21 %. The soil temperature of the G-C-B system increased by less than 0.5 °C after ten years of continuous operation. This paper can provide a valuable theoretical basis for the energy form modification of the C-B system in the HSCW zone.
期刊介绍:
Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application.
The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.