ZUO Youhua , LI Rong , HUA Junfeng , HAO Siyu , XIE Jing , XU Lixin , YE Mingfu , WAN Chao
{"title":"Co0.5Cu0.5/CNR 催化剂的制备及其在硼烷氨水解制氢中的性能","authors":"ZUO Youhua , LI Rong , HUA Junfeng , HAO Siyu , XIE Jing , XU Lixin , YE Mingfu , WAN Chao","doi":"10.1016/S1872-5813(24)60442-1","DOIUrl":null,"url":null,"abstract":"<div><p>Cobalt nitrate and copper nitrate was mixed to prepare solution A. Phenyldicarboxylic acid and <em>N</em>,<em>N</em>-dimethylformamide was mixed to prepare solution B. Co/Cu Lavashield skeleton series materials (Co/Cu-MIL precursors) was then synthesized by mixing the above two solution via solvothermal method. The precursor was further carbonized to produce the MOFs derivatives, i.e. bimetallic carbon nanorods (Co<sub><em>x</em></sub>Cu<sub>1–<em>x</em></sub>/CNR) catalysts. The morphology and composition of the catalysts were explored by SEM, TEM, XRD, XPS and other characterization means. The results showed that Co<sub><em>x</em></sub>Cu<sub>1–<em>x</em></sub>/CNR was successfully obtained after calcination of Co/Cu-MIL at high temperature. The activity of the catalyst was optimal when <em>x</em>=0.5, the solvothermal temperature of 120 °C and the calcination temperature of 650 °C. The TOF value of the Co<sub>0.5</sub>Cu<sub>0.5</sub>/CNR catalyst for the hydrolysis of ammonia borane for the production of hydrogen was 2718.21 h<sup>–1</sup> with activation energy of 51.64 kJ/mol. The catalyst had good cyclic stability. Although the activity decreased, the conversion of AB still maintained 100% after 10 cycles.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 9","pages":"Pages 1307-1317"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of Co0.5Cu0.5/CNR catalyst and its performance in hydrogen production by hydrolysis of ammonia borane\",\"authors\":\"ZUO Youhua , LI Rong , HUA Junfeng , HAO Siyu , XIE Jing , XU Lixin , YE Mingfu , WAN Chao\",\"doi\":\"10.1016/S1872-5813(24)60442-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cobalt nitrate and copper nitrate was mixed to prepare solution A. Phenyldicarboxylic acid and <em>N</em>,<em>N</em>-dimethylformamide was mixed to prepare solution B. Co/Cu Lavashield skeleton series materials (Co/Cu-MIL precursors) was then synthesized by mixing the above two solution via solvothermal method. The precursor was further carbonized to produce the MOFs derivatives, i.e. bimetallic carbon nanorods (Co<sub><em>x</em></sub>Cu<sub>1–<em>x</em></sub>/CNR) catalysts. The morphology and composition of the catalysts were explored by SEM, TEM, XRD, XPS and other characterization means. The results showed that Co<sub><em>x</em></sub>Cu<sub>1–<em>x</em></sub>/CNR was successfully obtained after calcination of Co/Cu-MIL at high temperature. The activity of the catalyst was optimal when <em>x</em>=0.5, the solvothermal temperature of 120 °C and the calcination temperature of 650 °C. The TOF value of the Co<sub>0.5</sub>Cu<sub>0.5</sub>/CNR catalyst for the hydrolysis of ammonia borane for the production of hydrogen was 2718.21 h<sup>–1</sup> with activation energy of 51.64 kJ/mol. The catalyst had good cyclic stability. Although the activity decreased, the conversion of AB still maintained 100% after 10 cycles.</p></div>\",\"PeriodicalId\":15956,\"journal\":{\"name\":\"燃料化学学报\",\"volume\":\"52 9\",\"pages\":\"Pages 1307-1317\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"燃料化学学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872581324604421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872581324604421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
Preparation of Co0.5Cu0.5/CNR catalyst and its performance in hydrogen production by hydrolysis of ammonia borane
Cobalt nitrate and copper nitrate was mixed to prepare solution A. Phenyldicarboxylic acid and N,N-dimethylformamide was mixed to prepare solution B. Co/Cu Lavashield skeleton series materials (Co/Cu-MIL precursors) was then synthesized by mixing the above two solution via solvothermal method. The precursor was further carbonized to produce the MOFs derivatives, i.e. bimetallic carbon nanorods (CoxCu1–x/CNR) catalysts. The morphology and composition of the catalysts were explored by SEM, TEM, XRD, XPS and other characterization means. The results showed that CoxCu1–x/CNR was successfully obtained after calcination of Co/Cu-MIL at high temperature. The activity of the catalyst was optimal when x=0.5, the solvothermal temperature of 120 °C and the calcination temperature of 650 °C. The TOF value of the Co0.5Cu0.5/CNR catalyst for the hydrolysis of ammonia borane for the production of hydrogen was 2718.21 h–1 with activation energy of 51.64 kJ/mol. The catalyst had good cyclic stability. Although the activity decreased, the conversion of AB still maintained 100% after 10 cycles.
期刊介绍:
Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.