Mofan Cheng , Wei He , Zhuohong Li , Guangyi Yang , Hongyan Zhang
{"title":"多样性中的和谐:超高分辨率遥感图像的内容清理变化检测框架","authors":"Mofan Cheng , Wei He , Zhuohong Li , Guangyi Yang , Hongyan Zhang","doi":"10.1016/j.isprsjprs.2024.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>Change detection, as a crucial task in the field of Earth observation, aims to identify changed pixels between multi-temporal remote-sensing images captured at the same geographical area. However, in practical applications, there are challenges of pseudo changes arising from diverse imaging conditions and different remote-sensing platforms. Existing methods either overlook the different imaging styles between bi-temporal images, or transfer the bi-temporal styles via domain adaptation that may lose ground details. To address these problems, we introduce the disentangled representation learning that mitigates differences of imaging styles while preserving content details to develop a change detection framework, named Content Cleansing Network (CCNet). Specifically, CCNet embeds each input image into two distinct subspaces: a shared content space and a private style space. The separation of style space aims to mitigate the discrepant style due to different imaging condition, while the extracted content space reflects semantic features that is essential for change detection. Then, a multi-resolution parallel structure constructs the content space encoder, facilitating robust feature extraction of semantic information and spatial details. The cleansed content features enable accurate detection of changes in the land surface. Additionally, a lightweight decoder for image restoration enhances the independence and interpretability of the disentangled spaces. To verify the proposed method, CCNet is applied to five public datasets and a multi-temporal dataset collected in this study. Comparative experiments against eleven advanced methods demonstrate the effectiveness and superiority of CCNet. The experimental results show that our method robustly addresses the issues related to both temporal and platform variations, making it a promising method for change detection in complex conditions and supporting downstream applications.</p></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"218 ","pages":"Pages 1-19"},"PeriodicalIF":10.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S092427162400340X/pdfft?md5=05257e0a48272b7c28a6809497111281&pid=1-s2.0-S092427162400340X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Harmony in diversity: Content cleansing change detection framework for very-high-resolution remote-sensing images\",\"authors\":\"Mofan Cheng , Wei He , Zhuohong Li , Guangyi Yang , Hongyan Zhang\",\"doi\":\"10.1016/j.isprsjprs.2024.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Change detection, as a crucial task in the field of Earth observation, aims to identify changed pixels between multi-temporal remote-sensing images captured at the same geographical area. However, in practical applications, there are challenges of pseudo changes arising from diverse imaging conditions and different remote-sensing platforms. Existing methods either overlook the different imaging styles between bi-temporal images, or transfer the bi-temporal styles via domain adaptation that may lose ground details. To address these problems, we introduce the disentangled representation learning that mitigates differences of imaging styles while preserving content details to develop a change detection framework, named Content Cleansing Network (CCNet). Specifically, CCNet embeds each input image into two distinct subspaces: a shared content space and a private style space. The separation of style space aims to mitigate the discrepant style due to different imaging condition, while the extracted content space reflects semantic features that is essential for change detection. Then, a multi-resolution parallel structure constructs the content space encoder, facilitating robust feature extraction of semantic information and spatial details. The cleansed content features enable accurate detection of changes in the land surface. Additionally, a lightweight decoder for image restoration enhances the independence and interpretability of the disentangled spaces. To verify the proposed method, CCNet is applied to five public datasets and a multi-temporal dataset collected in this study. Comparative experiments against eleven advanced methods demonstrate the effectiveness and superiority of CCNet. The experimental results show that our method robustly addresses the issues related to both temporal and platform variations, making it a promising method for change detection in complex conditions and supporting downstream applications.</p></div>\",\"PeriodicalId\":50269,\"journal\":{\"name\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"volume\":\"218 \",\"pages\":\"Pages 1-19\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S092427162400340X/pdfft?md5=05257e0a48272b7c28a6809497111281&pid=1-s2.0-S092427162400340X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092427162400340X\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092427162400340X","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Harmony in diversity: Content cleansing change detection framework for very-high-resolution remote-sensing images
Change detection, as a crucial task in the field of Earth observation, aims to identify changed pixels between multi-temporal remote-sensing images captured at the same geographical area. However, in practical applications, there are challenges of pseudo changes arising from diverse imaging conditions and different remote-sensing platforms. Existing methods either overlook the different imaging styles between bi-temporal images, or transfer the bi-temporal styles via domain adaptation that may lose ground details. To address these problems, we introduce the disentangled representation learning that mitigates differences of imaging styles while preserving content details to develop a change detection framework, named Content Cleansing Network (CCNet). Specifically, CCNet embeds each input image into two distinct subspaces: a shared content space and a private style space. The separation of style space aims to mitigate the discrepant style due to different imaging condition, while the extracted content space reflects semantic features that is essential for change detection. Then, a multi-resolution parallel structure constructs the content space encoder, facilitating robust feature extraction of semantic information and spatial details. The cleansed content features enable accurate detection of changes in the land surface. Additionally, a lightweight decoder for image restoration enhances the independence and interpretability of the disentangled spaces. To verify the proposed method, CCNet is applied to five public datasets and a multi-temporal dataset collected in this study. Comparative experiments against eleven advanced methods demonstrate the effectiveness and superiority of CCNet. The experimental results show that our method robustly addresses the issues related to both temporal and platform variations, making it a promising method for change detection in complex conditions and supporting downstream applications.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.