{"title":"Opca:在遗忘数据存储中实现多用户优化并发访问","authors":"Yuezhi Che;Dazhao Cheng;Xiao Wang;Rujia Wang","doi":"10.1109/TPDS.2024.3441623","DOIUrl":null,"url":null,"abstract":"The challenges of data privacy and security posed by data outsourcing are becoming increasingly prevalent. Oblivious RAM (ORAM)-based oblivious data storage guarantees data confidentiality through data encryption and access pattern obfuscation. However, it suffers from performance degradation and low throughput. To address these issues, the concurrency of ORAM in a multi-user scenario has been explored. We investigate several existing concurrent oblivious data storage solutions and discover that a trusted proxy is used to serve concurrent accesses between users and storage, with processing locks involved in the proxy to ensure correctness and prevent conflicts. The proxy-based system is inherently prone to pessimistic concurrency control, and as the number of users grows, a proxy might become a performance bottleneck, causing significant delays. In this study, we propose Opca, a novel oblivious data storage framework that enables optimistic concurrent access. Opca refines the proxy design by temporally storing multiple versions of modified data with labeled timestamps, committing only the latest version to the storage during a separate processing period. Opca is implemented and evaluated in different real-world storage backends with a scalable number of users, and its performance is compared to alternative schemes. Opca outperforms the state-of-the-art concurrent oblivious storage system TaoStore, which relies on a similar system setting. Our results show that Opca can improve 3.77x throughput and reduce 73.5% response time.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"35 11","pages":"1891-1903"},"PeriodicalIF":5.6000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Opca: Enabling Optimistic Concurrent Access for Multiple Users in Oblivious Data Storage\",\"authors\":\"Yuezhi Che;Dazhao Cheng;Xiao Wang;Rujia Wang\",\"doi\":\"10.1109/TPDS.2024.3441623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The challenges of data privacy and security posed by data outsourcing are becoming increasingly prevalent. Oblivious RAM (ORAM)-based oblivious data storage guarantees data confidentiality through data encryption and access pattern obfuscation. However, it suffers from performance degradation and low throughput. To address these issues, the concurrency of ORAM in a multi-user scenario has been explored. We investigate several existing concurrent oblivious data storage solutions and discover that a trusted proxy is used to serve concurrent accesses between users and storage, with processing locks involved in the proxy to ensure correctness and prevent conflicts. The proxy-based system is inherently prone to pessimistic concurrency control, and as the number of users grows, a proxy might become a performance bottleneck, causing significant delays. In this study, we propose Opca, a novel oblivious data storage framework that enables optimistic concurrent access. Opca refines the proxy design by temporally storing multiple versions of modified data with labeled timestamps, committing only the latest version to the storage during a separate processing period. Opca is implemented and evaluated in different real-world storage backends with a scalable number of users, and its performance is compared to alternative schemes. Opca outperforms the state-of-the-art concurrent oblivious storage system TaoStore, which relies on a similar system setting. Our results show that Opca can improve 3.77x throughput and reduce 73.5% response time.\",\"PeriodicalId\":13257,\"journal\":{\"name\":\"IEEE Transactions on Parallel and Distributed Systems\",\"volume\":\"35 11\",\"pages\":\"1891-1903\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Parallel and Distributed Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10634290/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10634290/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Opca: Enabling Optimistic Concurrent Access for Multiple Users in Oblivious Data Storage
The challenges of data privacy and security posed by data outsourcing are becoming increasingly prevalent. Oblivious RAM (ORAM)-based oblivious data storage guarantees data confidentiality through data encryption and access pattern obfuscation. However, it suffers from performance degradation and low throughput. To address these issues, the concurrency of ORAM in a multi-user scenario has been explored. We investigate several existing concurrent oblivious data storage solutions and discover that a trusted proxy is used to serve concurrent accesses between users and storage, with processing locks involved in the proxy to ensure correctness and prevent conflicts. The proxy-based system is inherently prone to pessimistic concurrency control, and as the number of users grows, a proxy might become a performance bottleneck, causing significant delays. In this study, we propose Opca, a novel oblivious data storage framework that enables optimistic concurrent access. Opca refines the proxy design by temporally storing multiple versions of modified data with labeled timestamps, committing only the latest version to the storage during a separate processing period. Opca is implemented and evaluated in different real-world storage backends with a scalable number of users, and its performance is compared to alternative schemes. Opca outperforms the state-of-the-art concurrent oblivious storage system TaoStore, which relies on a similar system setting. Our results show that Opca can improve 3.77x throughput and reduce 73.5% response time.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.