{"title":"1.39-4.25 太赫兹范围内的多频数字太赫兹全息技术","authors":"Rusnė Ivaškevičiūtė-Povilauskienė;Ignas Grigelionis;Agnieszka Siemion;Domas Jokubauskis;Kęstutis Ikamas;Alvydas Lisauskas;Linas Minkevičius;Gintaras Valušis","doi":"10.1109/TTHZ.2024.3410670","DOIUrl":null,"url":null,"abstract":"Terahertz (THz) multifrequency digital holography within the range from 1.39–4.25 THz is demonstrated. Holograms are recorded using an optically pumped molecular THz laser operating at emission lines of 1.39-, 2.52-, 3.11-, and 4.25 THz frequencies, and nanometric field effect transistor with integrated patch antennae as a THz detector. It is revealed that phase-shifting methods allow for qualitative reconstruction of multifrequency THz holograms combined into one “colored” image. It provides more information about the low-absorbing objects with additionally improved quality achieved by removing unwanted information related to the so-called dc term and conjugated beam forming a virtual image. It is shown that the THz holography can be applied for the investigation of low-absorbing objects, and it is illustrated via inspection of stacked graphene layers placed on a high-resistivity silicon substrate.","PeriodicalId":13258,"journal":{"name":"IEEE Transactions on Terahertz Science and Technology","volume":"14 5","pages":"568-578"},"PeriodicalIF":3.9000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10551534","citationCount":"0","resultStr":"{\"title\":\"Multifrequency Digital Terahertz Holography Within 1.39–4.25 THz Range\",\"authors\":\"Rusnė Ivaškevičiūtė-Povilauskienė;Ignas Grigelionis;Agnieszka Siemion;Domas Jokubauskis;Kęstutis Ikamas;Alvydas Lisauskas;Linas Minkevičius;Gintaras Valušis\",\"doi\":\"10.1109/TTHZ.2024.3410670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Terahertz (THz) multifrequency digital holography within the range from 1.39–4.25 THz is demonstrated. Holograms are recorded using an optically pumped molecular THz laser operating at emission lines of 1.39-, 2.52-, 3.11-, and 4.25 THz frequencies, and nanometric field effect transistor with integrated patch antennae as a THz detector. It is revealed that phase-shifting methods allow for qualitative reconstruction of multifrequency THz holograms combined into one “colored” image. It provides more information about the low-absorbing objects with additionally improved quality achieved by removing unwanted information related to the so-called dc term and conjugated beam forming a virtual image. It is shown that the THz holography can be applied for the investigation of low-absorbing objects, and it is illustrated via inspection of stacked graphene layers placed on a high-resistivity silicon substrate.\",\"PeriodicalId\":13258,\"journal\":{\"name\":\"IEEE Transactions on Terahertz Science and Technology\",\"volume\":\"14 5\",\"pages\":\"568-578\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10551534\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Terahertz Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10551534/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Terahertz Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10551534/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Multifrequency Digital Terahertz Holography Within 1.39–4.25 THz Range
Terahertz (THz) multifrequency digital holography within the range from 1.39–4.25 THz is demonstrated. Holograms are recorded using an optically pumped molecular THz laser operating at emission lines of 1.39-, 2.52-, 3.11-, and 4.25 THz frequencies, and nanometric field effect transistor with integrated patch antennae as a THz detector. It is revealed that phase-shifting methods allow for qualitative reconstruction of multifrequency THz holograms combined into one “colored” image. It provides more information about the low-absorbing objects with additionally improved quality achieved by removing unwanted information related to the so-called dc term and conjugated beam forming a virtual image. It is shown that the THz holography can be applied for the investigation of low-absorbing objects, and it is illustrated via inspection of stacked graphene layers placed on a high-resistivity silicon substrate.
期刊介绍:
IEEE Transactions on Terahertz Science and Technology focuses on original research on Terahertz theory, techniques, and applications as they relate to components, devices, circuits, and systems involving the generation, transmission, and detection of Terahertz waves.