Joshua Vauloup, Cécile Bouilhac, Nicolas Coppey, Patrick Lacroix-Desmazes, Bernard Fraisse, Lorenzo Stievano, Laure Monconduit and Moulay Tahar Sougrati
{"title":"推进锂离子电池正极材料回收的可持续实践:磁性钴回收的机械化学优化†。","authors":"Joshua Vauloup, Cécile Bouilhac, Nicolas Coppey, Patrick Lacroix-Desmazes, Bernard Fraisse, Lorenzo Stievano, Laure Monconduit and Moulay Tahar Sougrati","doi":"10.1039/D4MR00018H","DOIUrl":null,"url":null,"abstract":"<p >Lithium-ion batteries (LIBs) stand as the dominant power source for electric vehicles owing to their mature technology and exceptional performance. Consequently, metallic components of LIB cathode materials (Ni, Co, Li, and Mn) are assuming strategic significance. The imperative recycling of these metals has necessitated the development of novel technologies that can curtail secondary pollution arising from prevailing hydrometallurgical procedures, including issues such as wastewater generation and excessive energy and chemical consumption. In this study, we present an optimised mechanochemical process tailored for the magnetic recovery of cobalt from LiCoO<small><sub>2</sub></small>, which is a crucial component of LIBs. Our methodology involves the initial reduction of cobalt, facilitated by aluminium, followed by a selective extraction process that leverages the magnetic properties of the obtained species. A systematic exploration of milling parameters was undertaken to comprehensively understand their influence on chemical reactions and to improve reduction efficiency. This research represents a significant stride towards fostering sustainable practices in the realm of LIB cathode material recycling, addressing critical concerns related to resource management and environmental impact.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mr/d4mr00018h?page=search","citationCount":"0","resultStr":"{\"title\":\"Advancing sustainable practices in Li-ion battery cathode material recycling: mechanochemical optimisation for magnetic cobalt recovery†\",\"authors\":\"Joshua Vauloup, Cécile Bouilhac, Nicolas Coppey, Patrick Lacroix-Desmazes, Bernard Fraisse, Lorenzo Stievano, Laure Monconduit and Moulay Tahar Sougrati\",\"doi\":\"10.1039/D4MR00018H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Lithium-ion batteries (LIBs) stand as the dominant power source for electric vehicles owing to their mature technology and exceptional performance. Consequently, metallic components of LIB cathode materials (Ni, Co, Li, and Mn) are assuming strategic significance. The imperative recycling of these metals has necessitated the development of novel technologies that can curtail secondary pollution arising from prevailing hydrometallurgical procedures, including issues such as wastewater generation and excessive energy and chemical consumption. In this study, we present an optimised mechanochemical process tailored for the magnetic recovery of cobalt from LiCoO<small><sub>2</sub></small>, which is a crucial component of LIBs. Our methodology involves the initial reduction of cobalt, facilitated by aluminium, followed by a selective extraction process that leverages the magnetic properties of the obtained species. A systematic exploration of milling parameters was undertaken to comprehensively understand their influence on chemical reactions and to improve reduction efficiency. This research represents a significant stride towards fostering sustainable practices in the realm of LIB cathode material recycling, addressing critical concerns related to resource management and environmental impact.</p>\",\"PeriodicalId\":101140,\"journal\":{\"name\":\"RSC Mechanochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/mr/d4mr00018h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Mechanochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/mr/d4mr00018h\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Mechanochemistry","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/mr/d4mr00018h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Advancing sustainable practices in Li-ion battery cathode material recycling: mechanochemical optimisation for magnetic cobalt recovery†
Lithium-ion batteries (LIBs) stand as the dominant power source for electric vehicles owing to their mature technology and exceptional performance. Consequently, metallic components of LIB cathode materials (Ni, Co, Li, and Mn) are assuming strategic significance. The imperative recycling of these metals has necessitated the development of novel technologies that can curtail secondary pollution arising from prevailing hydrometallurgical procedures, including issues such as wastewater generation and excessive energy and chemical consumption. In this study, we present an optimised mechanochemical process tailored for the magnetic recovery of cobalt from LiCoO2, which is a crucial component of LIBs. Our methodology involves the initial reduction of cobalt, facilitated by aluminium, followed by a selective extraction process that leverages the magnetic properties of the obtained species. A systematic exploration of milling parameters was undertaken to comprehensively understand their influence on chemical reactions and to improve reduction efficiency. This research represents a significant stride towards fostering sustainable practices in the realm of LIB cathode material recycling, addressing critical concerns related to resource management and environmental impact.