{"title":"通过氧化钛微谐振器的耳语画廊模式提高 Perovskite 太阳能电池的量子效率","authors":"Ayusmin Panda, Chandran Sudakar, Birabar Ranjit Kumar Nanda","doi":"10.1002/adpr.202300339","DOIUrl":null,"url":null,"abstract":"<p>With the aid of 3D full-field finite difference time–domain simulations, model configurations for <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>CsPbI</mtext>\n </mrow>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation>$\\left(\\text{CsPbI}\\right)_{3}$</annotation>\n </semantics></math> thin-film solar cell devices that include periodically arranged <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>TiO</mtext>\n </mrow>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$\\left(\\text{TiO}\\right)_{2}$</annotation>\n </semantics></math> microspheres, exhibiting resonating whispering gallery modes (WGMs), are proposed. The <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>TiO</mtext>\n </mrow>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$\\left(\\text{TiO}\\right)_{2}$</annotation>\n </semantics></math> microspheres present, either immersed in perovskite or coated with perovskite layer, between the electron- and hole-transport layers show enhanced current-conversion efficiency. The presence of WGMs lead to enhancement in the absorption of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>CsPbI</mtext>\n </mrow>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation>$\\left(\\text{CsPbI}\\right)_{3}$</annotation>\n </semantics></math> layer. The incoming electromagnetic wave couples with <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>TiO</mtext>\n </mrow>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$\\left(\\text{TiO}\\right)_{2}$</annotation>\n </semantics></math> microsphere and forms confined resonating modes. Different designs are examined for deciding the appropriate position of WGM exhibiting spheres with respect to thin-film perovskite solar cell (PSC) featuring back reflector and optimized antireflectance coating. Since the incoupling element is lossless, energy stored in microspheres is absorbed efficiently by the underlying active material. This directly contributes to the increment in the current density of the solar cell. Thus, the devices show a higher current density of 23.62 mA cm<sup>−1</sup>, while that in planar solar cell device shows current density of 13.68 mA cm<sup>−1</sup>, for the same thickness of perovskite layer. This leads to more than 70% enhancement in the short-circuit current density than the conventional PSCs device of similar size.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202300339","citationCount":"0","resultStr":"{\"title\":\"Enhancement of Quantum Efficiency in Perovskite Solar Cells Through Whispering Gallery Modes from Titanium Oxide Micro-Resonators\",\"authors\":\"Ayusmin Panda, Chandran Sudakar, Birabar Ranjit Kumar Nanda\",\"doi\":\"10.1002/adpr.202300339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the aid of 3D full-field finite difference time–domain simulations, model configurations for <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>CsPbI</mtext>\\n </mrow>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n <annotation>$\\\\left(\\\\text{CsPbI}\\\\right)_{3}$</annotation>\\n </semantics></math> thin-film solar cell devices that include periodically arranged <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>TiO</mtext>\\n </mrow>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation>$\\\\left(\\\\text{TiO}\\\\right)_{2}$</annotation>\\n </semantics></math> microspheres, exhibiting resonating whispering gallery modes (WGMs), are proposed. The <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>TiO</mtext>\\n </mrow>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation>$\\\\left(\\\\text{TiO}\\\\right)_{2}$</annotation>\\n </semantics></math> microspheres present, either immersed in perovskite or coated with perovskite layer, between the electron- and hole-transport layers show enhanced current-conversion efficiency. The presence of WGMs lead to enhancement in the absorption of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>CsPbI</mtext>\\n </mrow>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n <annotation>$\\\\left(\\\\text{CsPbI}\\\\right)_{3}$</annotation>\\n </semantics></math> layer. The incoming electromagnetic wave couples with <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>TiO</mtext>\\n </mrow>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation>$\\\\left(\\\\text{TiO}\\\\right)_{2}$</annotation>\\n </semantics></math> microsphere and forms confined resonating modes. Different designs are examined for deciding the appropriate position of WGM exhibiting spheres with respect to thin-film perovskite solar cell (PSC) featuring back reflector and optimized antireflectance coating. Since the incoupling element is lossless, energy stored in microspheres is absorbed efficiently by the underlying active material. This directly contributes to the increment in the current density of the solar cell. Thus, the devices show a higher current density of 23.62 mA cm<sup>−1</sup>, while that in planar solar cell device shows current density of 13.68 mA cm<sup>−1</sup>, for the same thickness of perovskite layer. This leads to more than 70% enhancement in the short-circuit current density than the conventional PSCs device of similar size.</p>\",\"PeriodicalId\":7263,\"journal\":{\"name\":\"Advanced Photonics Research\",\"volume\":\"5 9\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202300339\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202300339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202300339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
借助三维全场有限差分时域模拟,我们提出了 CsPbI 3 $left(\text{CsPbI}\right)_{3}$ 薄膜太阳能电池器件的模型配置,其中包括周期性排列的 TiO 2 $left(\text{TiO}\right)_{2}$ 微球,这些微球表现出共振耳语廊模式 (WGM)。在电子传输层和空穴传输层之间的 TiO 2 $\left(text{TiO}\right)_{2}$微球,无论是浸没在包晶石中还是包覆在包晶石层上,都显示出更高的电流转换效率。WGM 的存在增强了 CsPbI 3 $\left(\text{CsPbI}\right)_{3}$层的吸收。传入的电磁波与 TiO 2 微球耦合,形成封闭的共振模式。我们研究了不同的设计,以决定 WGM 显示球与具有背反射器和优化抗反射涂层的薄膜过氧化物太阳能电池(PSC)的适当位置。由于耦合元件是无损耗的,微球中储存的能量会被底层活性材料有效吸收。这直接提高了太阳能电池的电流密度。因此,在相同厚度的过氧化物层下,该装置的电流密度高达 23.62 mA cm-1,而平面太阳能电池装置的电流密度为 13.68 mA cm-1。这使得短路电流密度比尺寸相似的传统 PSCs 器件提高了 70% 以上。
Enhancement of Quantum Efficiency in Perovskite Solar Cells Through Whispering Gallery Modes from Titanium Oxide Micro-Resonators
With the aid of 3D full-field finite difference time–domain simulations, model configurations for thin-film solar cell devices that include periodically arranged microspheres, exhibiting resonating whispering gallery modes (WGMs), are proposed. The microspheres present, either immersed in perovskite or coated with perovskite layer, between the electron- and hole-transport layers show enhanced current-conversion efficiency. The presence of WGMs lead to enhancement in the absorption of layer. The incoming electromagnetic wave couples with microsphere and forms confined resonating modes. Different designs are examined for deciding the appropriate position of WGM exhibiting spheres with respect to thin-film perovskite solar cell (PSC) featuring back reflector and optimized antireflectance coating. Since the incoupling element is lossless, energy stored in microspheres is absorbed efficiently by the underlying active material. This directly contributes to the increment in the current density of the solar cell. Thus, the devices show a higher current density of 23.62 mA cm−1, while that in planar solar cell device shows current density of 13.68 mA cm−1, for the same thickness of perovskite layer. This leads to more than 70% enhancement in the short-circuit current density than the conventional PSCs device of similar size.