同步辐射 X 射线荧光跟踪质子交换膜水电解器催化剂涂层膜中的元素分布

IF 6.2 Q2 ENERGY & FUELS Advanced Energy and Sustainability Research Pub Date : 2024-06-20 DOI:10.1002/aesr.202400048
Alexander Rex, Leonardo Almeida De Campos, Torben Gottschalk, Dario Ferreira Sanchez, Patrick Trinke, Steffen Czioska, Erisa Saraçi, Boris Bensmann, Jan-Dierk Grunwaldt, Richard Hanke-Rauschenbach, Thomas L. Sheppard
{"title":"同步辐射 X 射线荧光跟踪质子交换膜水电解器催化剂涂层膜中的元素分布","authors":"Alexander Rex,&nbsp;Leonardo Almeida De Campos,&nbsp;Torben Gottschalk,&nbsp;Dario Ferreira Sanchez,&nbsp;Patrick Trinke,&nbsp;Steffen Czioska,&nbsp;Erisa Saraçi,&nbsp;Boris Bensmann,&nbsp;Jan-Dierk Grunwaldt,&nbsp;Richard Hanke-Rauschenbach,&nbsp;Thomas L. Sheppard","doi":"10.1002/aesr.202400048","DOIUrl":null,"url":null,"abstract":"<p>The stability of catalyst layers and membranes in proton exchange membrane water electrolysis (PEMWE) cells represents an ongoing challenge, compounded by the dissolution of components and migration of elements within the catalyst-coated membrane (CCM). Conventional microscopy methods often struggle to efficiently evaluate large cross-sections of PEMWE membranes, which is essential for representative analysis of technical scale CCMs. Herein, synchrotron radiation-based X-Ray fluorescence microscopy is exploited to analyze the stability of CCMs with around 1 μm resolution and a field of view of ≈200 × 75 μm<sup>2</sup>. Three application scenarios are investigated: 1) migration of catalyst elements, 2) dissolution of components, and 3) contaminated water supply containing <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mtext>Fe</mtext>\n </mrow>\n <mrow>\n <mn>2</mn>\n <mo>+</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$\\left(\\text{Fe}\\right)^{2 &amp;amp;#x00026;amp;amp;amp;amp;plus;}$</annotation>\n </semantics></math> ions. XRF is performed at three different X-Ray energies (11.7, 11.4, and 11.0 keV), revealing the local elemental composition, including Pt, Ir, Ti, and Fe, under different stressing conditions. Notable observations include the distribution of Ir across the membrane and in the cathode catalyst layer, localization of Pt within the membrane, accumulation of Ti in the cathode catalyst layer, and minimal presence of Fe. XRF has been demonstrated to be a powerful analytical tool for accurate and high throughput imaging of catalyst degradation in PEMWE scenarios, particularly of technical scale devices.</p>","PeriodicalId":29794,"journal":{"name":"Advanced Energy and Sustainability Research","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aesr.202400048","citationCount":"0","resultStr":"{\"title\":\"Elemental Distribution in Catalyst-Coated Membranes of Proton Exchange Membrane Water Electrolysers Tracked by Synchrotron X-Ray Fluorescence\",\"authors\":\"Alexander Rex,&nbsp;Leonardo Almeida De Campos,&nbsp;Torben Gottschalk,&nbsp;Dario Ferreira Sanchez,&nbsp;Patrick Trinke,&nbsp;Steffen Czioska,&nbsp;Erisa Saraçi,&nbsp;Boris Bensmann,&nbsp;Jan-Dierk Grunwaldt,&nbsp;Richard Hanke-Rauschenbach,&nbsp;Thomas L. Sheppard\",\"doi\":\"10.1002/aesr.202400048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The stability of catalyst layers and membranes in proton exchange membrane water electrolysis (PEMWE) cells represents an ongoing challenge, compounded by the dissolution of components and migration of elements within the catalyst-coated membrane (CCM). Conventional microscopy methods often struggle to efficiently evaluate large cross-sections of PEMWE membranes, which is essential for representative analysis of technical scale CCMs. Herein, synchrotron radiation-based X-Ray fluorescence microscopy is exploited to analyze the stability of CCMs with around 1 μm resolution and a field of view of ≈200 × 75 μm<sup>2</sup>. Three application scenarios are investigated: 1) migration of catalyst elements, 2) dissolution of components, and 3) contaminated water supply containing <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mtext>Fe</mtext>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n <mo>+</mo>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$\\\\left(\\\\text{Fe}\\\\right)^{2 &amp;amp;#x00026;amp;amp;amp;amp;plus;}$</annotation>\\n </semantics></math> ions. XRF is performed at three different X-Ray energies (11.7, 11.4, and 11.0 keV), revealing the local elemental composition, including Pt, Ir, Ti, and Fe, under different stressing conditions. Notable observations include the distribution of Ir across the membrane and in the cathode catalyst layer, localization of Pt within the membrane, accumulation of Ti in the cathode catalyst layer, and minimal presence of Fe. XRF has been demonstrated to be a powerful analytical tool for accurate and high throughput imaging of catalyst degradation in PEMWE scenarios, particularly of technical scale devices.</p>\",\"PeriodicalId\":29794,\"journal\":{\"name\":\"Advanced Energy and Sustainability Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aesr.202400048\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy and Sustainability Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aesr.202400048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy and Sustainability Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aesr.202400048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

质子交换膜电解水(PEMWE)电池中催化剂层和膜的稳定性是一个持续的挑战,催化剂涂层膜(CCM)内成分的溶解和元素的迁移使问题变得更加复杂。传统的显微镜方法往往难以有效评估 PEMWE 膜的大截面,而这对于技术规模的 CCM 的代表性分析至关重要。本文利用同步辐射 X 射线荧光显微镜分析 CCM 的稳定性,分辨率约为 1 μm,视场≈200 × 75 μm2。研究了三种应用场景:1) 催化剂元素的迁移;2) 成分的溶解;3) 含有 Fe 2 + $\left(text\{Fe}\right)^{2 &amp;#x00026;amp;amp;amp;amp;plus;}$ 离子的污染水源。XRF 在三种不同的 X 射线能量(11.7、11.4 和 11.0 keV)下进行,揭示了不同应力条件下的局部元素组成,包括铂、铱、钛和铁。值得注意的观察结果包括:Ir 分布在整个膜和阴极催化剂层中,Pt 分布在膜内,Ti 聚集在阴极催化剂层中,Fe 的存在极少。XRF 已被证明是一种功能强大的分析工具,可对 PEMWE 情况下的催化剂降解进行精确和高通量成像,特别是技术规模的装置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Elemental Distribution in Catalyst-Coated Membranes of Proton Exchange Membrane Water Electrolysers Tracked by Synchrotron X-Ray Fluorescence

The stability of catalyst layers and membranes in proton exchange membrane water electrolysis (PEMWE) cells represents an ongoing challenge, compounded by the dissolution of components and migration of elements within the catalyst-coated membrane (CCM). Conventional microscopy methods often struggle to efficiently evaluate large cross-sections of PEMWE membranes, which is essential for representative analysis of technical scale CCMs. Herein, synchrotron radiation-based X-Ray fluorescence microscopy is exploited to analyze the stability of CCMs with around 1 μm resolution and a field of view of ≈200 × 75 μm2. Three application scenarios are investigated: 1) migration of catalyst elements, 2) dissolution of components, and 3) contaminated water supply containing Fe 2 + $\left(\text{Fe}\right)^{2 &amp;#x00026;amp;amp;amp;amp;plus;}$ ions. XRF is performed at three different X-Ray energies (11.7, 11.4, and 11.0 keV), revealing the local elemental composition, including Pt, Ir, Ti, and Fe, under different stressing conditions. Notable observations include the distribution of Ir across the membrane and in the cathode catalyst layer, localization of Pt within the membrane, accumulation of Ti in the cathode catalyst layer, and minimal presence of Fe. XRF has been demonstrated to be a powerful analytical tool for accurate and high throughput imaging of catalyst degradation in PEMWE scenarios, particularly of technical scale devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.20
自引率
3.40%
发文量
0
期刊介绍: Advanced Energy and Sustainability Research is an open access academic journal that focuses on publishing high-quality peer-reviewed research articles in the areas of energy harvesting, conversion, storage, distribution, applications, ecology, climate change, water and environmental sciences, and related societal impacts. The journal provides readers with free access to influential scientific research that has undergone rigorous peer review, a common feature of all journals in the Advanced series. In addition to original research articles, the journal publishes opinion, editorial and review articles designed to meet the needs of a broad readership interested in energy and sustainability science and related fields. In addition, Advanced Energy and Sustainability Research is indexed in several abstracting and indexing services, including: CAS: Chemical Abstracts Service (ACS) Directory of Open Access Journals (DOAJ) Emerging Sources Citation Index (Clarivate Analytics) INSPEC (IET) Web of Science (Clarivate Analytics).
期刊最新文献
Masthead Striking a Balance: Decentralized and Centralized Wastewater Treatment Systems for Advancing Sustainable Development Goal 6 The Influence of Discontinuity-Induced Fringing Effect on the Output Performance of Contact-Separation Mode Triboelectric Nanogenerators: Experiment and Modeling Studies Masthead Enabling Aqueous Processing of Ni-Rich Layered Oxide Cathodes via Systematic Modification of Biopolymer (Polysaccharide)-Based Binders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1