利用多组学和生物标志物进行疾病预测有助于英国生物库中的病例对照基因发现

IF 31.7 1区 生物学 Q1 GENETICS & HEREDITY Nature genetics Pub Date : 2024-09-11 DOI:10.1038/s41588-024-01898-1
Manik Garg, Marcin Karpinski, Dorota Matelska, Lawrence Middleton, Oliver S. Burren, Fengyuan Hu, Eleanor Wheeler, Katherine R. Smith, Margarete A. Fabre, Jonathan Mitchell, Amanda O’Neill, Euan A. Ashley, Andrew R. Harper, Quanli Wang, Ryan S. Dhindsa, Slavé Petrovski, Dimitrios Vitsios
{"title":"利用多组学和生物标志物进行疾病预测有助于英国生物库中的病例对照基因发现","authors":"Manik Garg, Marcin Karpinski, Dorota Matelska, Lawrence Middleton, Oliver S. Burren, Fengyuan Hu, Eleanor Wheeler, Katherine R. Smith, Margarete A. Fabre, Jonathan Mitchell, Amanda O’Neill, Euan A. Ashley, Andrew R. Harper, Quanli Wang, Ryan S. Dhindsa, Slavé Petrovski, Dimitrios Vitsios","doi":"10.1038/s41588-024-01898-1","DOIUrl":null,"url":null,"abstract":"The emergence of biobank-level datasets offers new opportunities to discover novel biomarkers and develop predictive algorithms for human disease. Here, we present an ensemble machine-learning framework (machine learning with phenotype associations, MILTON) utilizing a range of biomarkers to predict 3,213 diseases in the UK Biobank. Leveraging the UK Biobank’s longitudinal health record data, MILTON predicts incident disease cases undiagnosed at time of recruitment, largely outperforming available polygenic risk scores. We further demonstrate the utility of MILTON in augmenting genetic association analyses in a phenome-wide association study of 484,230 genome-sequenced samples, along with 46,327 samples with matched plasma proteomics data. This resulted in improved signals for 88 known (P < 1 × 10−8) gene–disease relationships alongside 182 gene–disease relationships that did not achieve genome-wide significance in the nonaugmented baseline cohorts. We validated these discoveries in the FinnGen biobank alongside two orthogonal machine-learning methods built for gene–disease prioritization. All extracted gene–disease associations and incident disease predictive biomarkers are publicly available ( http://milton.public.cgr.astrazeneca.com ). MILTON uses phenotype information in the UK Biobank to identify clinical biomarkers and other quantitative traits that characterize diseases. It then constructs augmented cohorts by predicting undiagnosed individuals, improving power to discover gene–disease relationships.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"56 9","pages":"1821-1831"},"PeriodicalIF":31.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41588-024-01898-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Disease prediction with multi-omics and biomarkers empowers case–control genetic discoveries in the UK Biobank\",\"authors\":\"Manik Garg, Marcin Karpinski, Dorota Matelska, Lawrence Middleton, Oliver S. Burren, Fengyuan Hu, Eleanor Wheeler, Katherine R. Smith, Margarete A. Fabre, Jonathan Mitchell, Amanda O’Neill, Euan A. Ashley, Andrew R. Harper, Quanli Wang, Ryan S. Dhindsa, Slavé Petrovski, Dimitrios Vitsios\",\"doi\":\"10.1038/s41588-024-01898-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence of biobank-level datasets offers new opportunities to discover novel biomarkers and develop predictive algorithms for human disease. Here, we present an ensemble machine-learning framework (machine learning with phenotype associations, MILTON) utilizing a range of biomarkers to predict 3,213 diseases in the UK Biobank. Leveraging the UK Biobank’s longitudinal health record data, MILTON predicts incident disease cases undiagnosed at time of recruitment, largely outperforming available polygenic risk scores. We further demonstrate the utility of MILTON in augmenting genetic association analyses in a phenome-wide association study of 484,230 genome-sequenced samples, along with 46,327 samples with matched plasma proteomics data. This resulted in improved signals for 88 known (P < 1 × 10−8) gene–disease relationships alongside 182 gene–disease relationships that did not achieve genome-wide significance in the nonaugmented baseline cohorts. We validated these discoveries in the FinnGen biobank alongside two orthogonal machine-learning methods built for gene–disease prioritization. All extracted gene–disease associations and incident disease predictive biomarkers are publicly available ( http://milton.public.cgr.astrazeneca.com ). MILTON uses phenotype information in the UK Biobank to identify clinical biomarkers and other quantitative traits that characterize diseases. It then constructs augmented cohorts by predicting undiagnosed individuals, improving power to discover gene–disease relationships.\",\"PeriodicalId\":18985,\"journal\":{\"name\":\"Nature genetics\",\"volume\":\"56 9\",\"pages\":\"1821-1831\"},\"PeriodicalIF\":31.7000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41588-024-01898-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41588-024-01898-1\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41588-024-01898-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

生物库级数据集的出现为发现新型生物标记物和开发人类疾病预测算法提供了新的机遇。在这里,我们提出了一个集合机器学习框架(表型关联机器学习,MILTON),利用一系列生物标记物预测英国生物库中的 3213 种疾病。利用英国生物库的纵向健康记录数据,MILTON 可以预测招募时未确诊的疾病病例,在很大程度上优于现有的多基因风险评分。我们在一项全表型关联研究中进一步证明了 MILTON 在增强遗传关联分析方面的实用性,该研究包括 484,230 份基因组测序样本以及 46,327 份具有匹配血浆蛋白质组学数据的样本。这使得 88 种已知(P < 1 × 10-8)基因-疾病关系以及 182 种在非增强基线队列中未达到全基因组显著性的基因-疾病关系的信号得到改善。我们在 FinnGen 生物库中用两种正交的机器学习方法验证了这些发现,这两种方法都是为基因疾病优先排序而建立的。所有提取的基因-疾病关联和事件疾病预测生物标记物均可公开获取 (http://milton.public.cgr.astrazeneca.com)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Disease prediction with multi-omics and biomarkers empowers case–control genetic discoveries in the UK Biobank
The emergence of biobank-level datasets offers new opportunities to discover novel biomarkers and develop predictive algorithms for human disease. Here, we present an ensemble machine-learning framework (machine learning with phenotype associations, MILTON) utilizing a range of biomarkers to predict 3,213 diseases in the UK Biobank. Leveraging the UK Biobank’s longitudinal health record data, MILTON predicts incident disease cases undiagnosed at time of recruitment, largely outperforming available polygenic risk scores. We further demonstrate the utility of MILTON in augmenting genetic association analyses in a phenome-wide association study of 484,230 genome-sequenced samples, along with 46,327 samples with matched plasma proteomics data. This resulted in improved signals for 88 known (P < 1 × 10−8) gene–disease relationships alongside 182 gene–disease relationships that did not achieve genome-wide significance in the nonaugmented baseline cohorts. We validated these discoveries in the FinnGen biobank alongside two orthogonal machine-learning methods built for gene–disease prioritization. All extracted gene–disease associations and incident disease predictive biomarkers are publicly available ( http://milton.public.cgr.astrazeneca.com ). MILTON uses phenotype information in the UK Biobank to identify clinical biomarkers and other quantitative traits that characterize diseases. It then constructs augmented cohorts by predicting undiagnosed individuals, improving power to discover gene–disease relationships.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature genetics
Nature genetics 生物-遗传学
CiteScore
43.00
自引率
2.60%
发文量
241
审稿时长
3 months
期刊介绍: Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation. Integrative genetic topics comprise, but are not limited to: -Genes in the pathology of human disease -Molecular analysis of simple and complex genetic traits -Cancer genetics -Agricultural genomics -Developmental genetics -Regulatory variation in gene expression -Strategies and technologies for extracting function from genomic data -Pharmacological genomics -Genome evolution
期刊最新文献
A lifesaving revolution delayed Elucidating the genomic basis of rare pediatric neurological diseases in Central Asia and Transcaucasia Spatial and single-nucleus transcriptomic analysis of genetic and sporadic forms of Alzheimer’s disease Genome-wide association analysis provides insights into the molecular etiology of dilated cardiomyopathy Genome-wide association study reveals mechanisms underlying dilated cardiomyopathy and myocardial resilience
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1