Sergey N. Marshenya, Alexey G. Scherbakov, Artem D. Dembitskiy, Alexander A. Golubnichiy, Ivan A. Trussov, Aleksandra A. Savina, Sergey M. Kazakov, Dmitry A. Aksyonov, Evgeny V. Antipov and Stanislav S. Fedotov
{"title":"NaZr2(PO4)3--立方兰贝石型钠离子固体导体","authors":"Sergey N. Marshenya, Alexey G. Scherbakov, Artem D. Dembitskiy, Alexander A. Golubnichiy, Ivan A. Trussov, Aleksandra A. Savina, Sergey M. Kazakov, Dmitry A. Aksyonov, Evgeny V. Antipov and Stanislav S. Fedotov","doi":"10.1039/D4DT02288B","DOIUrl":null,"url":null,"abstract":"<p >The synthesis of langbeinite-type phosphates with small cations such as Li<small><sup>+</sup></small> or Na<small><sup>+</sup></small><em>via</em> a high-temperature solid-state reaction is a challenging task due to the predominant formation of a related NaSICON-type phase. This work reports on the synthesis route, crystal structure, thermal behavior, and Na-conductive properties of the langbeinite-type NaZr<small><sub>2</sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small> prepared by a mechanochemically activated ion-exchange reaction between hydrothermally prepared NH<small><sub>4</sub></small>Zr<small><sub>2</sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small> and NaNO<small><sub>3</sub></small>. The crystal structure of NaZr<small><sub>2</sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small> is refined based on X-ray diffraction data and validated by Fourier-transformed infrared spectroscopy. NaZr<small><sub>2</sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small> is found to be stable up to 730 °C, undergoing a transformation into the NaSICON phase with further heating. Notably, in the 25–500 °C range, the material shows negative thermal expansion. The Na<small><sup>+</sup></small> conductivity within the range of 50–225 °C amounts to 1.7 × 10<small><sup>−8</sup></small> S cm<small><sup>−1</sup></small> at 50 °C and 1 × 10<small><sup>−6</sup></small> S cm<small><sup>−1</sup></small> at 225 °C with an activation energy of 0.44 eV, accompanied by a sufficiently low (∼10<small><sup>−12</sup></small> S cm<small><sup>−1</sup></small>) electronic conductivity. The bandgap of 4.44 eV and the electrochemical stability window covering the 1.39–4.18 V <em>vs.</em> Na/Na<small><sup>+</sup></small> range are calculated using density functional theory. The obtained results open up opportunities for designing langbeinite-structured phosphates as potential solid electrolytes for Na-ion batteries.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NaZr2(PO4)3 – a cubic langbeinite-type sodium-ion solid conductor†\",\"authors\":\"Sergey N. Marshenya, Alexey G. Scherbakov, Artem D. Dembitskiy, Alexander A. Golubnichiy, Ivan A. Trussov, Aleksandra A. Savina, Sergey M. Kazakov, Dmitry A. Aksyonov, Evgeny V. Antipov and Stanislav S. Fedotov\",\"doi\":\"10.1039/D4DT02288B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The synthesis of langbeinite-type phosphates with small cations such as Li<small><sup>+</sup></small> or Na<small><sup>+</sup></small><em>via</em> a high-temperature solid-state reaction is a challenging task due to the predominant formation of a related NaSICON-type phase. This work reports on the synthesis route, crystal structure, thermal behavior, and Na-conductive properties of the langbeinite-type NaZr<small><sub>2</sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small> prepared by a mechanochemically activated ion-exchange reaction between hydrothermally prepared NH<small><sub>4</sub></small>Zr<small><sub>2</sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small> and NaNO<small><sub>3</sub></small>. The crystal structure of NaZr<small><sub>2</sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small> is refined based on X-ray diffraction data and validated by Fourier-transformed infrared spectroscopy. NaZr<small><sub>2</sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small> is found to be stable up to 730 °C, undergoing a transformation into the NaSICON phase with further heating. Notably, in the 25–500 °C range, the material shows negative thermal expansion. The Na<small><sup>+</sup></small> conductivity within the range of 50–225 °C amounts to 1.7 × 10<small><sup>−8</sup></small> S cm<small><sup>−1</sup></small> at 50 °C and 1 × 10<small><sup>−6</sup></small> S cm<small><sup>−1</sup></small> at 225 °C with an activation energy of 0.44 eV, accompanied by a sufficiently low (∼10<small><sup>−12</sup></small> S cm<small><sup>−1</sup></small>) electronic conductivity. The bandgap of 4.44 eV and the electrochemical stability window covering the 1.39–4.18 V <em>vs.</em> Na/Na<small><sup>+</sup></small> range are calculated using density functional theory. The obtained results open up opportunities for designing langbeinite-structured phosphates as potential solid electrolytes for Na-ion batteries.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/dt/d4dt02288b\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/dt/d4dt02288b","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
通过高温固态反应合成含有 Li+ 或 Na+ 等小阳离子的兰贝石型磷酸盐是一项具有挑战性的任务,因为在合成过程中主要会形成相关的 NaSICON 型相。本研究报告了通过水热法制备的 NH4Zr2(PO4)3 和 NaNO3 之间的机械化学激活离子交换反应制备的兰贝石型 NaZr2(PO4)3 的合成路线、晶体结构、热行为和 Na 导电特性。根据 X 射线衍射数据完善了 NaZr2(PO4)3 的晶体结构,并通过傅立叶变换红外光谱进行了验证。研究发现,NaZr2(PO4)3 在 730 ℃ 以下是稳定的,进一步加热后会转变为 NaSICON 相。值得注意的是,在 25-500 ℃ 范围内,该材料呈现负热膨胀。在 50-225 ℃ 范围内,Na+导电率在 50 ℃ 时为 1.7 × 10-8 S cm-1,在 225 ℃ 时为 1 × 10-6 S cm-1,活化能为 0.44 eV,同时具有足够低的(∼10-12 S cm-1)电子导电率。利用密度泛函理论计算了 4.44 eV 的带隙以及 1.39-4.18 V 对 Na/Na+ 范围内的电化学稳定性窗口。所获得的结果为设计兰贝石结构磷酸盐作为潜在的纳离子电池固体电解质提供了机会。
NaZr2(PO4)3 – a cubic langbeinite-type sodium-ion solid conductor†
The synthesis of langbeinite-type phosphates with small cations such as Li+ or Na+via a high-temperature solid-state reaction is a challenging task due to the predominant formation of a related NaSICON-type phase. This work reports on the synthesis route, crystal structure, thermal behavior, and Na-conductive properties of the langbeinite-type NaZr2(PO4)3 prepared by a mechanochemically activated ion-exchange reaction between hydrothermally prepared NH4Zr2(PO4)3 and NaNO3. The crystal structure of NaZr2(PO4)3 is refined based on X-ray diffraction data and validated by Fourier-transformed infrared spectroscopy. NaZr2(PO4)3 is found to be stable up to 730 °C, undergoing a transformation into the NaSICON phase with further heating. Notably, in the 25–500 °C range, the material shows negative thermal expansion. The Na+ conductivity within the range of 50–225 °C amounts to 1.7 × 10−8 S cm−1 at 50 °C and 1 × 10−6 S cm−1 at 225 °C with an activation energy of 0.44 eV, accompanied by a sufficiently low (∼10−12 S cm−1) electronic conductivity. The bandgap of 4.44 eV and the electrochemical stability window covering the 1.39–4.18 V vs. Na/Na+ range are calculated using density functional theory. The obtained results open up opportunities for designing langbeinite-structured phosphates as potential solid electrolytes for Na-ion batteries.