两全其美:在物种分布模型中使用叠加泛化法整合专家范围图

IF 6.3 1区 环境科学与生态学 Q1 ECOLOGY Global Ecology and Biogeography Pub Date : 2024-09-10 DOI:10.1111/geb.13911
Julian Oeser, Damaris Zurell, Frieder Mayer, Emrah Çoraman, Nia Toshkova, Stanimira Deleva, Ioseb Natradze, Petr Benda, Astghik Ghazaryan, Sercan Irmak, Nijat Hasanov, Gulnar Guliyeva, Mariya Gritsina, Tobias Kuemmerle
{"title":"两全其美:在物种分布模型中使用叠加泛化法整合专家范围图","authors":"Julian Oeser,&nbsp;Damaris Zurell,&nbsp;Frieder Mayer,&nbsp;Emrah Çoraman,&nbsp;Nia Toshkova,&nbsp;Stanimira Deleva,&nbsp;Ioseb Natradze,&nbsp;Petr Benda,&nbsp;Astghik Ghazaryan,&nbsp;Sercan Irmak,&nbsp;Nijat Hasanov,&nbsp;Gulnar Guliyeva,&nbsp;Mariya Gritsina,&nbsp;Tobias Kuemmerle","doi":"10.1111/geb.13911","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>Species distribution models (SDMs) are powerful tools for assessing suitable habitats across large areas and at fine spatial resolution. Yet, the usefulness of SDMs for mapping species' realised distributions is often limited since data biases or missing information on dispersal barriers or biotic interactions hinder them from accurately delineating species' range limits. One way to overcome this limitation is to integrate SDMs with expert range maps, which provide coarse-scale information on the extent of species' ranges and thereby range limits that are complementary to information offered by SDMs.</p>\n </section>\n \n <section>\n \n <h3> Innovation</h3>\n \n <p>Here, we propose a new approach for integrating expert range maps in SDMs based on an ensemble method called stacked generalisation. Specifically, our approach relies on training a meta-learner regression model using predictions from one or more SDM algorithms alongside the distance of training points to expert-defined ranges as predictor variables. We demonstrate our approach with an occurrence dataset for 49 bat species covering four biodiversity hotspots in the Eastern Mediterranean, Western Asia and Central Asia.</p>\n </section>\n \n <section>\n \n <h3> Main Conclusions</h3>\n \n <p>Our approach offers a flexible method to integrate expert range maps with any combination of SDM modelling algorithms, thus facilitating the use of algorithm ensembles. In addition, it provides a novel, data-driven way to account for uncertainty in expert-defined ranges not requiring prior knowledge about their accuracy, which is often lacking. Integrating expert range maps into SDMs for bats resulted in more realistic predictions of distribution patterns that showed narrower niche breadths and smaller range overlaps between species compared to traditional SDMs. Our approach holds promise to improve assessments of species distributions, while our work highlights the overlooked potential of stacked generalisation as an ensemble method in species distribution modelling.</p>\n </section>\n </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 12","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13911","citationCount":"0","resultStr":"{\"title\":\"The Best of Two Worlds: Using Stacked Generalisation for Integrating Expert Range Maps in Species Distribution Models\",\"authors\":\"Julian Oeser,&nbsp;Damaris Zurell,&nbsp;Frieder Mayer,&nbsp;Emrah Çoraman,&nbsp;Nia Toshkova,&nbsp;Stanimira Deleva,&nbsp;Ioseb Natradze,&nbsp;Petr Benda,&nbsp;Astghik Ghazaryan,&nbsp;Sercan Irmak,&nbsp;Nijat Hasanov,&nbsp;Gulnar Guliyeva,&nbsp;Mariya Gritsina,&nbsp;Tobias Kuemmerle\",\"doi\":\"10.1111/geb.13911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Aim</h3>\\n \\n <p>Species distribution models (SDMs) are powerful tools for assessing suitable habitats across large areas and at fine spatial resolution. Yet, the usefulness of SDMs for mapping species' realised distributions is often limited since data biases or missing information on dispersal barriers or biotic interactions hinder them from accurately delineating species' range limits. One way to overcome this limitation is to integrate SDMs with expert range maps, which provide coarse-scale information on the extent of species' ranges and thereby range limits that are complementary to information offered by SDMs.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Innovation</h3>\\n \\n <p>Here, we propose a new approach for integrating expert range maps in SDMs based on an ensemble method called stacked generalisation. Specifically, our approach relies on training a meta-learner regression model using predictions from one or more SDM algorithms alongside the distance of training points to expert-defined ranges as predictor variables. We demonstrate our approach with an occurrence dataset for 49 bat species covering four biodiversity hotspots in the Eastern Mediterranean, Western Asia and Central Asia.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Main Conclusions</h3>\\n \\n <p>Our approach offers a flexible method to integrate expert range maps with any combination of SDM modelling algorithms, thus facilitating the use of algorithm ensembles. In addition, it provides a novel, data-driven way to account for uncertainty in expert-defined ranges not requiring prior knowledge about their accuracy, which is often lacking. Integrating expert range maps into SDMs for bats resulted in more realistic predictions of distribution patterns that showed narrower niche breadths and smaller range overlaps between species compared to traditional SDMs. Our approach holds promise to improve assessments of species distributions, while our work highlights the overlooked potential of stacked generalisation as an ensemble method in species distribution modelling.</p>\\n </section>\\n </div>\",\"PeriodicalId\":176,\"journal\":{\"name\":\"Global Ecology and Biogeography\",\"volume\":\"33 12\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13911\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Ecology and Biogeography\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/geb.13911\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Ecology and Biogeography","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/geb.13911","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

物种分布模型(SDM)是评估大面积和高空间分辨率适宜栖息地的有力工具。然而,SDM 在绘制物种真实分布图方面的作用往往受到限制,因为数据偏差或有关扩散障碍或生物相互作用的信息缺失会阻碍它们准确划定物种的分布范围界限。克服这一局限性的方法之一是将可持续数据集与专家分布图结合起来,专家分布图可提供关于物种分布范围的粗尺度信息,从而提供与可持续数据集所提供信息互补的分布范围限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Best of Two Worlds: Using Stacked Generalisation for Integrating Expert Range Maps in Species Distribution Models

Aim

Species distribution models (SDMs) are powerful tools for assessing suitable habitats across large areas and at fine spatial resolution. Yet, the usefulness of SDMs for mapping species' realised distributions is often limited since data biases or missing information on dispersal barriers or biotic interactions hinder them from accurately delineating species' range limits. One way to overcome this limitation is to integrate SDMs with expert range maps, which provide coarse-scale information on the extent of species' ranges and thereby range limits that are complementary to information offered by SDMs.

Innovation

Here, we propose a new approach for integrating expert range maps in SDMs based on an ensemble method called stacked generalisation. Specifically, our approach relies on training a meta-learner regression model using predictions from one or more SDM algorithms alongside the distance of training points to expert-defined ranges as predictor variables. We demonstrate our approach with an occurrence dataset for 49 bat species covering four biodiversity hotspots in the Eastern Mediterranean, Western Asia and Central Asia.

Main Conclusions

Our approach offers a flexible method to integrate expert range maps with any combination of SDM modelling algorithms, thus facilitating the use of algorithm ensembles. In addition, it provides a novel, data-driven way to account for uncertainty in expert-defined ranges not requiring prior knowledge about their accuracy, which is often lacking. Integrating expert range maps into SDMs for bats resulted in more realistic predictions of distribution patterns that showed narrower niche breadths and smaller range overlaps between species compared to traditional SDMs. Our approach holds promise to improve assessments of species distributions, while our work highlights the overlooked potential of stacked generalisation as an ensemble method in species distribution modelling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Ecology and Biogeography
Global Ecology and Biogeography 环境科学-生态学
CiteScore
12.10
自引率
3.10%
发文量
170
审稿时长
3 months
期刊介绍: Global Ecology and Biogeography (GEB) welcomes papers that investigate broad-scale (in space, time and/or taxonomy), general patterns in the organization of ecological systems and assemblages, and the processes that underlie them. In particular, GEB welcomes studies that use macroecological methods, comparative analyses, meta-analyses, reviews, spatial analyses and modelling to arrive at general, conceptual conclusions. Studies in GEB need not be global in spatial extent, but the conclusions and implications of the study must be relevant to ecologists and biogeographers globally, rather than being limited to local areas, or specific taxa. Similarly, GEB is not limited to spatial studies; we are equally interested in the general patterns of nature through time, among taxa (e.g., body sizes, dispersal abilities), through the course of evolution, etc. Further, GEB welcomes papers that investigate general impacts of human activities on ecological systems in accordance with the above criteria.
期刊最新文献
Fine-Grain Predictions Are Key to Accurately Represent Continental-Scale Biodiversity Patterns Issue Information Thermal Forcing Versus Chilling? Misspecification of Temperature Controls in Spring Phenology Models Predicting Landscape Conversion Impact on Small Mammal Occurrence and the Transmission of Parasites in the Atlantic Forest Spatial Variation in Upper Limits of Coral Cover on the Great Barrier Reef
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1