了解铅卤化物过氧化物中的功率定律光致发光衰减和双分子重组

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2024-09-11 DOI:10.1002/aenm.202403279
Ye Yuan, Genghua Yan, Chris Dreessen, Thomas Kirchartz
{"title":"了解铅卤化物过氧化物中的功率定律光致发光衰减和双分子重组","authors":"Ye Yuan, Genghua Yan, Chris Dreessen, Thomas Kirchartz","doi":"10.1002/aenm.202403279","DOIUrl":null,"url":null,"abstract":"Transient photoluminescence is a frequently used method in the field of halide perovskite photovoltaics to quantify recombination by determining the characteristic decay time of an exponential decay. This decay time is often considered to be a single value for a certain perovskite film. However, there are many mechanisms that lead to non-exponential decays. Here, it is shown that photoluminescence decays in many lead-halide perovskites are non-exponential and follow a power-law relation between PL intensity and time that is caused by shallow defects. Decay times therefore vary continuously as a function of time and injection level. In situations where recombination is bimolecular and decays follow a power law, the differential decay time equals the time delay after the laser pulse for long time delays and therefore completely lacks quantitative information about the recombination rate. Quantifying recombination using transient PL measurements, therefore, requires analyzing the lifetime as a function of injection level rather than time. As an alternative to the continuously varying decay time, a bimolecular recombination coefficient can also be determined, which correlates with the photoluminescence quantum efficiency. Finally, the influence of the repetition rate and the background subtraction method on the analysis of power-law type PL decays is discussed.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":null,"pages":null},"PeriodicalIF":24.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding Power-Law Photoluminescence Decays and Bimolecular Recombination in Lead-Halide Perovskites\",\"authors\":\"Ye Yuan, Genghua Yan, Chris Dreessen, Thomas Kirchartz\",\"doi\":\"10.1002/aenm.202403279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transient photoluminescence is a frequently used method in the field of halide perovskite photovoltaics to quantify recombination by determining the characteristic decay time of an exponential decay. This decay time is often considered to be a single value for a certain perovskite film. However, there are many mechanisms that lead to non-exponential decays. Here, it is shown that photoluminescence decays in many lead-halide perovskites are non-exponential and follow a power-law relation between PL intensity and time that is caused by shallow defects. Decay times therefore vary continuously as a function of time and injection level. In situations where recombination is bimolecular and decays follow a power law, the differential decay time equals the time delay after the laser pulse for long time delays and therefore completely lacks quantitative information about the recombination rate. Quantifying recombination using transient PL measurements, therefore, requires analyzing the lifetime as a function of injection level rather than time. As an alternative to the continuously varying decay time, a bimolecular recombination coefficient can also be determined, which correlates with the photoluminescence quantum efficiency. Finally, the influence of the repetition rate and the background subtraction method on the analysis of power-law type PL decays is discussed.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202403279\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202403279","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

瞬态光致发光是卤化物包晶光伏领域常用的一种方法,通过确定指数衰减的特征衰减时间来量化重组。这种衰减时间通常被认为是某种过氧化物薄膜的单一值。然而,有许多机制会导致非指数衰减。这里的研究表明,许多卤化铅包晶石的光致发光衰减都是非指数衰减,并且遵循光致发光强度与时间之间的幂律关系,这是由浅缺陷引起的。因此,衰减时间作为时间和注入水平的函数不断变化。在双分子重组和衰减遵循幂律的情况下,差分衰减时间等于激光脉冲后的长延时,因此完全缺乏有关重组速率的定量信息。因此,利用瞬态聚光测量来量化重组需要分析作为注入水平而非时间函数的寿命。作为连续变化衰减时间的替代方法,还可以测定双分子重组系数,该系数与光致发光量子效率相关。最后,还讨论了重复率和背景减除法对幂律型聚光衰减分析的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding Power-Law Photoluminescence Decays and Bimolecular Recombination in Lead-Halide Perovskites
Transient photoluminescence is a frequently used method in the field of halide perovskite photovoltaics to quantify recombination by determining the characteristic decay time of an exponential decay. This decay time is often considered to be a single value for a certain perovskite film. However, there are many mechanisms that lead to non-exponential decays. Here, it is shown that photoluminescence decays in many lead-halide perovskites are non-exponential and follow a power-law relation between PL intensity and time that is caused by shallow defects. Decay times therefore vary continuously as a function of time and injection level. In situations where recombination is bimolecular and decays follow a power law, the differential decay time equals the time delay after the laser pulse for long time delays and therefore completely lacks quantitative information about the recombination rate. Quantifying recombination using transient PL measurements, therefore, requires analyzing the lifetime as a function of injection level rather than time. As an alternative to the continuously varying decay time, a bimolecular recombination coefficient can also be determined, which correlates with the photoluminescence quantum efficiency. Finally, the influence of the repetition rate and the background subtraction method on the analysis of power-law type PL decays is discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Revolutionizing Oxygen Evolution Reaction Catalysts: Efficient and Ultrastable Interstitial W-Doped NiFe-LDHs/MOFs through Controlled Topological Conversion of Metal-Organic Frameworks (Adv. Energy Mater. 37/2024) A Bio-Inspired Dendritic MoOx Electrocatalyst for Efficient Electrochemical Nitrate Reduction to Ammonia (Adv. Energy Mater. 37/2024) Topological-Insulator Nanocomposite and Graphite-Like Tribo-Charge-Accumulating Fabric Enabling High-performance Non-Contact Stretchable and Textile-Based Triboelectric Nanogenerators with Robust Charge Retention (Adv. Energy Mater. 37/2024) Masthead: (Adv. Energy Mater. 37/2024) Advancing Charge Density in Temperature-Dependent Amphiphile Metal–Organic Polyhedra-Based Triboelectric Nanogenerators (Adv. Energy Mater. 37/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1