激活非对称[IrO6]八面体铱基氧化物中的晶格氧氧化机制,实现卓越的酸性电化学水氧化作用

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2024-09-11 DOI:10.1002/aenm.202402902
Yuying Liu, Ziyi Liu, Na Li, Chao Wang, Huijuan Wang, Qianqian Ji, Fengchun Hu, Hao Tan, Chaocheng Liu, Chenglong Liu, Zhi Li, Sihua Feng, Bing Tang, Ruiqi Liu, Liyang Lv, Weiren Cheng, Wensheng Yan
{"title":"激活非对称[IrO6]八面体铱基氧化物中的晶格氧氧化机制,实现卓越的酸性电化学水氧化作用","authors":"Yuying Liu, Ziyi Liu, Na Li, Chao Wang, Huijuan Wang, Qianqian Ji, Fengchun Hu, Hao Tan, Chaocheng Liu, Chenglong Liu, Zhi Li, Sihua Feng, Bing Tang, Ruiqi Liu, Liyang Lv, Weiren Cheng, Wensheng Yan","doi":"10.1002/aenm.202402902","DOIUrl":null,"url":null,"abstract":"The activation of lattice oxygen oxidation mechanism (LOM) will endow iridium-based electrocatalysts with desired acid-available water oxidation activity, compared to the conventional adsorbate evolution mechanism (AEM). However, the inherent symmetric [IrO<sub>6</sub>] octahedra of commercial Ir-based catalysts generally thermodynamically favor the AEM pathway contributing to the moderate water oxidation performance. Here, based on typical layered Ca<sub>2</sub>IrO<sub>4</sub> (CIO) modeled materials, the <i>d</i>-orbitals electron repulsion strategy is demonstrated, via constructing asymmetrically polarized Ir‒O‒Ru configuration in Ru-CIO, to effectively activate the lattice oxygen participating in water oxidation process for decent oxygen-related electrocatalytic activity. Specifically, a great increase of ≈700-fold and ≈170-fold in mass activity and turnover frequency, respectively, has been realized for the optimal Ru-CIO electrocatalyst in an acid medium relative to the commercial IrO<sub>2</sub> electrocatalysts, where a small overpotential of only 175 mV is required for achieving 10 mA cm<sub>geo</sub><sup>‒2</sup>. In situ X-ray fine structure spectroscopies combined with in situ <sup>18</sup>O- isotope-labeled differential electrochemical mass spectrometry analyses reveal that desirable LOM has been boosted by the activated lattice oxygen and the flexible Ir<sup>(3+δ)+</sup> active sites of asymmetric [IrO<sub>6</sub>] octahedra, which results in superior OER kinetics for Ir-based oxide catalysts.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":null,"pages":null},"PeriodicalIF":24.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activating Lattice Oxygen Oxidation Mechanism in Asymmetric [IrO6] Octahedra of Ir-Based Oxides Toward Superior Acidic Electrochemical Water Oxidation\",\"authors\":\"Yuying Liu, Ziyi Liu, Na Li, Chao Wang, Huijuan Wang, Qianqian Ji, Fengchun Hu, Hao Tan, Chaocheng Liu, Chenglong Liu, Zhi Li, Sihua Feng, Bing Tang, Ruiqi Liu, Liyang Lv, Weiren Cheng, Wensheng Yan\",\"doi\":\"10.1002/aenm.202402902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The activation of lattice oxygen oxidation mechanism (LOM) will endow iridium-based electrocatalysts with desired acid-available water oxidation activity, compared to the conventional adsorbate evolution mechanism (AEM). However, the inherent symmetric [IrO<sub>6</sub>] octahedra of commercial Ir-based catalysts generally thermodynamically favor the AEM pathway contributing to the moderate water oxidation performance. Here, based on typical layered Ca<sub>2</sub>IrO<sub>4</sub> (CIO) modeled materials, the <i>d</i>-orbitals electron repulsion strategy is demonstrated, via constructing asymmetrically polarized Ir‒O‒Ru configuration in Ru-CIO, to effectively activate the lattice oxygen participating in water oxidation process for decent oxygen-related electrocatalytic activity. Specifically, a great increase of ≈700-fold and ≈170-fold in mass activity and turnover frequency, respectively, has been realized for the optimal Ru-CIO electrocatalyst in an acid medium relative to the commercial IrO<sub>2</sub> electrocatalysts, where a small overpotential of only 175 mV is required for achieving 10 mA cm<sub>geo</sub><sup>‒2</sup>. In situ X-ray fine structure spectroscopies combined with in situ <sup>18</sup>O- isotope-labeled differential electrochemical mass spectrometry analyses reveal that desirable LOM has been boosted by the activated lattice oxygen and the flexible Ir<sup>(3+δ)+</sup> active sites of asymmetric [IrO<sub>6</sub>] octahedra, which results in superior OER kinetics for Ir-based oxide catalysts.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202402902\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202402902","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

与传统的吸附剂进化机制(AEM)相比,激活晶格氧氧化机制(LOM)将赋予铱基电催化剂理想的酸性水氧化活性。然而,商用铱基催化剂固有的对称[IrO6]八面体通常在热力学上倾向于 AEM 途径,从而导致水氧化性能一般。本文以典型的层状 Ca2IrO4(CIO)模型材料为基础,通过在 Ru-CIO 中构建不对称极化的 Ir-O-Ru 构型,证明了 d 轨道电子排斥策略可有效激活参与水氧化过程的晶格氧,从而提高与氧相关的电催化活性。具体来说,与商用二氧化铱电催化剂相比,最佳 Ru-CIO 电催化剂在酸性介质中的质量活性和翻转频率分别提高了≈700 倍和≈170 倍。原位 X 射线精细结构光谱与原位 18O- 同位素标记的差分电化学质谱分析相结合,揭示了活化的晶格氧和不对称[IrO6]八面体的柔性 Ir(3+δ)+ 活性位点提高了理想的 LOM,从而为基于 Ir 的氧化物催化剂带来了卓越的 OER 动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Activating Lattice Oxygen Oxidation Mechanism in Asymmetric [IrO6] Octahedra of Ir-Based Oxides Toward Superior Acidic Electrochemical Water Oxidation
The activation of lattice oxygen oxidation mechanism (LOM) will endow iridium-based electrocatalysts with desired acid-available water oxidation activity, compared to the conventional adsorbate evolution mechanism (AEM). However, the inherent symmetric [IrO6] octahedra of commercial Ir-based catalysts generally thermodynamically favor the AEM pathway contributing to the moderate water oxidation performance. Here, based on typical layered Ca2IrO4 (CIO) modeled materials, the d-orbitals electron repulsion strategy is demonstrated, via constructing asymmetrically polarized Ir‒O‒Ru configuration in Ru-CIO, to effectively activate the lattice oxygen participating in water oxidation process for decent oxygen-related electrocatalytic activity. Specifically, a great increase of ≈700-fold and ≈170-fold in mass activity and turnover frequency, respectively, has been realized for the optimal Ru-CIO electrocatalyst in an acid medium relative to the commercial IrO2 electrocatalysts, where a small overpotential of only 175 mV is required for achieving 10 mA cmgeo‒2. In situ X-ray fine structure spectroscopies combined with in situ 18O- isotope-labeled differential electrochemical mass spectrometry analyses reveal that desirable LOM has been boosted by the activated lattice oxygen and the flexible Ir(3+δ)+ active sites of asymmetric [IrO6] octahedra, which results in superior OER kinetics for Ir-based oxide catalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Revolutionizing Oxygen Evolution Reaction Catalysts: Efficient and Ultrastable Interstitial W-Doped NiFe-LDHs/MOFs through Controlled Topological Conversion of Metal-Organic Frameworks (Adv. Energy Mater. 37/2024) A Bio-Inspired Dendritic MoOx Electrocatalyst for Efficient Electrochemical Nitrate Reduction to Ammonia (Adv. Energy Mater. 37/2024) Topological-Insulator Nanocomposite and Graphite-Like Tribo-Charge-Accumulating Fabric Enabling High-performance Non-Contact Stretchable and Textile-Based Triboelectric Nanogenerators with Robust Charge Retention (Adv. Energy Mater. 37/2024) Masthead: (Adv. Energy Mater. 37/2024) Advancing Charge Density in Temperature-Dependent Amphiphile Metal–Organic Polyhedra-Based Triboelectric Nanogenerators (Adv. Energy Mater. 37/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1