{"title":"高龄产妇对老年大鼠缺血性中风易感性的影响血脑屏障通透性和基因表达研究","authors":"","doi":"10.1016/j.nbas.2024.100125","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Advanced maternal age (AMA), commonly defined as pregnancy at or above 35 years old. Based on the evidence, this trend has raised concerns about potential health consequences for mothers, particularly in relation to ischemic stroke. Studies suggest that AMA may be associated with a higher risk of ischemic stroke in women due to physiological changes that impact vascular health and increase cardiovascular risk factors. The aim of this study was to investigate the effect of AMA on the extent of damage after ischemic stroke in aged rats.</p></div><div><h3>Methods</h3><p>Female rats that gave birth at an old age (10 months) and at a young age (4 months) were subjected to ischemic stroke in old age (20 months) and subsequently compared.</p><p>We assessed neurological deficits, infarct volume, blood–brain barrier (BBB) permeability, TNF-alpha levels, total oxidant capacity, and gene expressions that play a role in BBB integrity (VEGF, Occludin, and MMP-9) following ischemic stroke.</p></div><div><h3>Results</h3><p>There were significantly elevated levels of MMP-9 expression and reduced levels of occludin in AMA rats. Additionally, AMA rats had significantly higher levels of TNF-alpha and total oxidant capacity after experiencing an ischemic stroke. AMA rats showed significantly higher brain water content (BBB permeability), infarct volume, and neurological deficits compared to young-aged pregnancies.</p></div><div><h3>Discussion</h3><p>Complex relationship between pregnancy-related physiological changes, aging, vascular gene expression, and inflammatory factors may play a role in the increased vulnerability observed in older pregnant rats. The similarities between pregnancy-related alterations and aging highlight the influence of advanced maternal age on susceptibility to ischemic stroke.</p></div>","PeriodicalId":72131,"journal":{"name":"Aging brain","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589958924000215/pdfft?md5=7b4566b53176186acd157cec681dd15d&pid=1-s2.0-S2589958924000215-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of advanced maternal age on ischemic stroke vulnerability in aged rats: Investigating on blood-brain barrier permeability and gene expression\",\"authors\":\"\",\"doi\":\"10.1016/j.nbas.2024.100125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Advanced maternal age (AMA), commonly defined as pregnancy at or above 35 years old. Based on the evidence, this trend has raised concerns about potential health consequences for mothers, particularly in relation to ischemic stroke. Studies suggest that AMA may be associated with a higher risk of ischemic stroke in women due to physiological changes that impact vascular health and increase cardiovascular risk factors. The aim of this study was to investigate the effect of AMA on the extent of damage after ischemic stroke in aged rats.</p></div><div><h3>Methods</h3><p>Female rats that gave birth at an old age (10 months) and at a young age (4 months) were subjected to ischemic stroke in old age (20 months) and subsequently compared.</p><p>We assessed neurological deficits, infarct volume, blood–brain barrier (BBB) permeability, TNF-alpha levels, total oxidant capacity, and gene expressions that play a role in BBB integrity (VEGF, Occludin, and MMP-9) following ischemic stroke.</p></div><div><h3>Results</h3><p>There were significantly elevated levels of MMP-9 expression and reduced levels of occludin in AMA rats. Additionally, AMA rats had significantly higher levels of TNF-alpha and total oxidant capacity after experiencing an ischemic stroke. AMA rats showed significantly higher brain water content (BBB permeability), infarct volume, and neurological deficits compared to young-aged pregnancies.</p></div><div><h3>Discussion</h3><p>Complex relationship between pregnancy-related physiological changes, aging, vascular gene expression, and inflammatory factors may play a role in the increased vulnerability observed in older pregnant rats. The similarities between pregnancy-related alterations and aging highlight the influence of advanced maternal age on susceptibility to ischemic stroke.</p></div>\",\"PeriodicalId\":72131,\"journal\":{\"name\":\"Aging brain\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589958924000215/pdfft?md5=7b4566b53176186acd157cec681dd15d&pid=1-s2.0-S2589958924000215-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging brain\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589958924000215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging brain","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589958924000215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Effect of advanced maternal age on ischemic stroke vulnerability in aged rats: Investigating on blood-brain barrier permeability and gene expression
Background
Advanced maternal age (AMA), commonly defined as pregnancy at or above 35 years old. Based on the evidence, this trend has raised concerns about potential health consequences for mothers, particularly in relation to ischemic stroke. Studies suggest that AMA may be associated with a higher risk of ischemic stroke in women due to physiological changes that impact vascular health and increase cardiovascular risk factors. The aim of this study was to investigate the effect of AMA on the extent of damage after ischemic stroke in aged rats.
Methods
Female rats that gave birth at an old age (10 months) and at a young age (4 months) were subjected to ischemic stroke in old age (20 months) and subsequently compared.
We assessed neurological deficits, infarct volume, blood–brain barrier (BBB) permeability, TNF-alpha levels, total oxidant capacity, and gene expressions that play a role in BBB integrity (VEGF, Occludin, and MMP-9) following ischemic stroke.
Results
There were significantly elevated levels of MMP-9 expression and reduced levels of occludin in AMA rats. Additionally, AMA rats had significantly higher levels of TNF-alpha and total oxidant capacity after experiencing an ischemic stroke. AMA rats showed significantly higher brain water content (BBB permeability), infarct volume, and neurological deficits compared to young-aged pregnancies.
Discussion
Complex relationship between pregnancy-related physiological changes, aging, vascular gene expression, and inflammatory factors may play a role in the increased vulnerability observed in older pregnant rats. The similarities between pregnancy-related alterations and aging highlight the influence of advanced maternal age on susceptibility to ischemic stroke.