友谊定理的数字图版本

IF 0.7 3区 数学 Q2 MATHEMATICS Discrete Mathematics Pub Date : 2024-09-11 DOI:10.1016/j.disc.2024.114238
{"title":"友谊定理的数字图版本","authors":"","doi":"10.1016/j.disc.2024.114238","DOIUrl":null,"url":null,"abstract":"<div><p>The Friendship Theorem states that if in a party any pair of persons has precisely one common friend, then there is always a person who is everybody's friend and the theorem has been proved by Paul Erdős, Alfréd Rényi, and Vera T. Sós in 1966. “What would happen if instead any pair of persons likes precisely one person?” While a friendship relation is symmetric, a liking relation may not be symmetric. Therefore to represent a liking relation we should use a directed graph. We call this digraph a “liking digraph”. It is easy to check that a symmetric liking digraph becomes a friendship graph if each directed cycle of length two is replaced with an edge. In this paper, we provide a digraph formulation of the Friendship Theorem which characterizes the liking digraphs. We also establish a sufficient and necessary condition for the existence of liking digraphs.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003698/pdfft?md5=368b7d4c1379f8549152a904b901804b&pid=1-s2.0-S0012365X24003698-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A digraph version of the Friendship Theorem\",\"authors\":\"\",\"doi\":\"10.1016/j.disc.2024.114238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Friendship Theorem states that if in a party any pair of persons has precisely one common friend, then there is always a person who is everybody's friend and the theorem has been proved by Paul Erdős, Alfréd Rényi, and Vera T. Sós in 1966. “What would happen if instead any pair of persons likes precisely one person?” While a friendship relation is symmetric, a liking relation may not be symmetric. Therefore to represent a liking relation we should use a directed graph. We call this digraph a “liking digraph”. It is easy to check that a symmetric liking digraph becomes a friendship graph if each directed cycle of length two is replaced with an edge. In this paper, we provide a digraph formulation of the Friendship Theorem which characterizes the liking digraphs. We also establish a sufficient and necessary condition for the existence of liking digraphs.</p></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003698/pdfft?md5=368b7d4c1379f8549152a904b901804b&pid=1-s2.0-S0012365X24003698-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003698\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003698","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

友谊定理指出,如果在一个聚会中,任何一对人恰好有一个共同的朋友,那么总有一个人是大家的朋友,该定理由保罗-厄多斯、阿尔弗雷德-雷尼和维拉-索斯于 1966 年证明。"如果任何一对人恰好喜欢一个人,会发生什么呢?"友谊关系是对称的,而喜欢关系可能不是对称的。因此,我们应该使用有向图来表示喜欢关系。我们称这种有向图为 "喜欢有向图"。如果把每个长度为 2 的有向循环替换为一条边,就可以很容易地检验出对称的喜好数图变成了友谊图。在本文中,我们提供了 "友谊定理 "的数图表述,它描述了喜欢数图的特征。我们还建立了存在喜欢数图的充分必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A digraph version of the Friendship Theorem

The Friendship Theorem states that if in a party any pair of persons has precisely one common friend, then there is always a person who is everybody's friend and the theorem has been proved by Paul Erdős, Alfréd Rényi, and Vera T. Sós in 1966. “What would happen if instead any pair of persons likes precisely one person?” While a friendship relation is symmetric, a liking relation may not be symmetric. Therefore to represent a liking relation we should use a directed graph. We call this digraph a “liking digraph”. It is easy to check that a symmetric liking digraph becomes a friendship graph if each directed cycle of length two is replaced with an edge. In this paper, we provide a digraph formulation of the Friendship Theorem which characterizes the liking digraphs. We also establish a sufficient and necessary condition for the existence of liking digraphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
期刊最新文献
On graphs with maximum difference between game chromatic number and chromatic number Stabbing boxes with finitely many axis-parallel lines and flats Transversal coalitions in hypergraphs Fibonacci and Catalan paths in a wall On the inclusion chromatic index of a Halin graph
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1