Rui Cao , Yongqiang Cai , Ji Dor , Qijun Liu , Mariia Poliakova , Defan Chen , Shuangshuang Wan , Yiming Yan
{"title":"中国川西高原咸水河断裂带地热水的分布与成因:断裂系统和区域地震活动的制约因素","authors":"Rui Cao , Yongqiang Cai , Ji Dor , Qijun Liu , Mariia Poliakova , Defan Chen , Shuangshuang Wan , Yiming Yan","doi":"10.1016/j.geothermics.2024.103150","DOIUrl":null,"url":null,"abstract":"<div><p>The Xianshuihe fault zone (XSFZ), which is characterized by intense tectonic activities, frequent earthquakes and great number of hot springs, has significant potential for exploiting geothermal resources. Previous studies primarily focus on certain hydrothermal systems in southeastern segment of XSFZ, such as Kangding hydrothermal system, but lack the synthetical comparison and systematic analysis of geothermal waters along the XSFZ. Based on detailed geological investigation, the XSFZ hydrothermal system has divided into six geothermal activity areas: Luhuo (LH), Daofu (DF), Qianning-Bamei (QB), Yalahe-Zhonggu (YZ), Kangding (KD) and Moxi (MX). According to the <sup>87</sup>Sr/<sup>86</sup>Sr ratios and elements behaving in water-rock interactions, the dissolution of silicate minerals is the primarily source of the hydrogeochemical compositions in geothermal waters. The δ<sub>D</sub> and δ<sup>18</sup>O composition indicate that geothermal waters primarily originated from meteoric waters, but also affected by deep fluids. However, the contribution of deep fluids to the southeastern geothermal areas (YZ, KD and MX) with high concentrations of Cl<sup>-</sup> is greater than that of the northwestern (LH, DF and QB). The reservoir temperatures and chlorine-enthalpy model reveal that there are three distinct geothermal systems along the XSFZ: YZ and KD geothermal waters are originated from a common deep reservoir (R1), MX are from R3, and LH, DF, and QB are from R4. Due to the uneven thermal structural distribution along XSFZ, the southeastern segments generated stronger thermal stress and have more frequent earthquake occurrence. Thus, the study of geothermal waters along XSFZ can provide valuable insights into deep tectonic activities and geochemical indicators of earthquake monitoring in the region.</p></div>","PeriodicalId":55095,"journal":{"name":"Geothermics","volume":"125 ","pages":"Article 103150"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distribution and genesis of geothermal waters in the Xianshuihe fault zone, Western Sichuan plateau, China: Constraints on fracture system and regional seismic activities\",\"authors\":\"Rui Cao , Yongqiang Cai , Ji Dor , Qijun Liu , Mariia Poliakova , Defan Chen , Shuangshuang Wan , Yiming Yan\",\"doi\":\"10.1016/j.geothermics.2024.103150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Xianshuihe fault zone (XSFZ), which is characterized by intense tectonic activities, frequent earthquakes and great number of hot springs, has significant potential for exploiting geothermal resources. Previous studies primarily focus on certain hydrothermal systems in southeastern segment of XSFZ, such as Kangding hydrothermal system, but lack the synthetical comparison and systematic analysis of geothermal waters along the XSFZ. Based on detailed geological investigation, the XSFZ hydrothermal system has divided into six geothermal activity areas: Luhuo (LH), Daofu (DF), Qianning-Bamei (QB), Yalahe-Zhonggu (YZ), Kangding (KD) and Moxi (MX). According to the <sup>87</sup>Sr/<sup>86</sup>Sr ratios and elements behaving in water-rock interactions, the dissolution of silicate minerals is the primarily source of the hydrogeochemical compositions in geothermal waters. The δ<sub>D</sub> and δ<sup>18</sup>O composition indicate that geothermal waters primarily originated from meteoric waters, but also affected by deep fluids. However, the contribution of deep fluids to the southeastern geothermal areas (YZ, KD and MX) with high concentrations of Cl<sup>-</sup> is greater than that of the northwestern (LH, DF and QB). The reservoir temperatures and chlorine-enthalpy model reveal that there are three distinct geothermal systems along the XSFZ: YZ and KD geothermal waters are originated from a common deep reservoir (R1), MX are from R3, and LH, DF, and QB are from R4. Due to the uneven thermal structural distribution along XSFZ, the southeastern segments generated stronger thermal stress and have more frequent earthquake occurrence. Thus, the study of geothermal waters along XSFZ can provide valuable insights into deep tectonic activities and geochemical indicators of earthquake monitoring in the region.</p></div>\",\"PeriodicalId\":55095,\"journal\":{\"name\":\"Geothermics\",\"volume\":\"125 \",\"pages\":\"Article 103150\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geothermics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375650524002360\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375650524002360","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Distribution and genesis of geothermal waters in the Xianshuihe fault zone, Western Sichuan plateau, China: Constraints on fracture system and regional seismic activities
The Xianshuihe fault zone (XSFZ), which is characterized by intense tectonic activities, frequent earthquakes and great number of hot springs, has significant potential for exploiting geothermal resources. Previous studies primarily focus on certain hydrothermal systems in southeastern segment of XSFZ, such as Kangding hydrothermal system, but lack the synthetical comparison and systematic analysis of geothermal waters along the XSFZ. Based on detailed geological investigation, the XSFZ hydrothermal system has divided into six geothermal activity areas: Luhuo (LH), Daofu (DF), Qianning-Bamei (QB), Yalahe-Zhonggu (YZ), Kangding (KD) and Moxi (MX). According to the 87Sr/86Sr ratios and elements behaving in water-rock interactions, the dissolution of silicate minerals is the primarily source of the hydrogeochemical compositions in geothermal waters. The δD and δ18O composition indicate that geothermal waters primarily originated from meteoric waters, but also affected by deep fluids. However, the contribution of deep fluids to the southeastern geothermal areas (YZ, KD and MX) with high concentrations of Cl- is greater than that of the northwestern (LH, DF and QB). The reservoir temperatures and chlorine-enthalpy model reveal that there are three distinct geothermal systems along the XSFZ: YZ and KD geothermal waters are originated from a common deep reservoir (R1), MX are from R3, and LH, DF, and QB are from R4. Due to the uneven thermal structural distribution along XSFZ, the southeastern segments generated stronger thermal stress and have more frequent earthquake occurrence. Thus, the study of geothermal waters along XSFZ can provide valuable insights into deep tectonic activities and geochemical indicators of earthquake monitoring in the region.
期刊介绍:
Geothermics is an international journal devoted to the research and development of geothermal energy. The International Board of Editors of Geothermics, which comprises specialists in the various aspects of geothermal resources, exploration and development, guarantees the balanced, comprehensive view of scientific and technological developments in this promising energy field.
It promulgates the state of the art and science of geothermal energy, its exploration and exploitation through a regular exchange of information from all parts of the world. The journal publishes articles dealing with the theory, exploration techniques and all aspects of the utilization of geothermal resources. Geothermics serves as the scientific house, or exchange medium, through which the growing community of geothermal specialists can provide and receive information.