利用 ATR-FTIR 光谱和拉曼光谱有效识别和区分麝香石和霞糠石

IF 2.7 3区 化学 Q2 CHEMISTRY, ANALYTICAL Vibrational Spectroscopy Pub Date : 2024-09-06 DOI:10.1016/j.vibspec.2024.103733
Pimthong Thongnopkun
{"title":"利用 ATR-FTIR 光谱和拉曼光谱有效识别和区分麝香石和霞糠石","authors":"Pimthong Thongnopkun","doi":"10.1016/j.vibspec.2024.103733","DOIUrl":null,"url":null,"abstract":"<div><p>Taaffeite (BeMg<sub>3</sub>Al<sub>8</sub>O<sub>16</sub>) and musgravite (Be(Mg,Fe,Zn)<sub>2</sub>Al<sub>6</sub>O<sub>12</sub>) are two of the rarest gem kinds worldwide, and their scarcity greatly enhances their extraordinary worth. Due to their nearly matched physical properties, discriminating between the two gems using basic gemological equipment will be exceedingly difficult, considering that they both belong to the same mineral family. Distinguishing between these two categories is crucial due to the substantial variation in their rarity levels, which greatly impacts on their market pricing. Nevertheless, there is a lack of published data in the scientific literature about the spectroscopic characterization of musgravite and taaffeite.</p><p>In this article, ATR-FTIR spectroscopy successfully distinguished Tanzanian musgravite from taaffeite for the first time. In addition, Raman spectroscopy and EPMA are employed for the identification of musgravite and taaffeite specimens. The EPMA results confirm that the Tanzanian gems under investigation have similar elemental compositions to those of the same kinds of stones discovered from other sources. The peaks observed in the ATR and Raman spectra serve as indicators for distinguishing between musgravite and taaffeite gemstones, with the goal of simplifying the identification process. The ATR and Raman spectra of musgravite and taaffeite are comprehensively analyzed and found to be achievable. The main Raman bands used to identify Tanzanian musgravite are situated at 412 and 713 cm<sup>−1</sup>, whereas for taaffeite, the significant bands were detected at 416 and 761 cm<sup>−1</sup>. The distinct ATR bands observed at 773 cm<sup>−1</sup>, corresponding to the vibration of Al–O, can be efficiently utilized as indications to differentiate Tanzanian musgravite from taaffeite. The results prove that ATR-FTIR spectroscopy, like Raman spectroscopy, is a very effective non-invasive method for rapidly distinguishing these precious gemstones.</p></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"135 ","pages":"Article 103733"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient identification and distinction of musgravite and taaffeite with the utilization of ATR-FTIR spectroscopy and Raman spectroscopy\",\"authors\":\"Pimthong Thongnopkun\",\"doi\":\"10.1016/j.vibspec.2024.103733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Taaffeite (BeMg<sub>3</sub>Al<sub>8</sub>O<sub>16</sub>) and musgravite (Be(Mg,Fe,Zn)<sub>2</sub>Al<sub>6</sub>O<sub>12</sub>) are two of the rarest gem kinds worldwide, and their scarcity greatly enhances their extraordinary worth. Due to their nearly matched physical properties, discriminating between the two gems using basic gemological equipment will be exceedingly difficult, considering that they both belong to the same mineral family. Distinguishing between these two categories is crucial due to the substantial variation in their rarity levels, which greatly impacts on their market pricing. Nevertheless, there is a lack of published data in the scientific literature about the spectroscopic characterization of musgravite and taaffeite.</p><p>In this article, ATR-FTIR spectroscopy successfully distinguished Tanzanian musgravite from taaffeite for the first time. In addition, Raman spectroscopy and EPMA are employed for the identification of musgravite and taaffeite specimens. The EPMA results confirm that the Tanzanian gems under investigation have similar elemental compositions to those of the same kinds of stones discovered from other sources. The peaks observed in the ATR and Raman spectra serve as indicators for distinguishing between musgravite and taaffeite gemstones, with the goal of simplifying the identification process. The ATR and Raman spectra of musgravite and taaffeite are comprehensively analyzed and found to be achievable. The main Raman bands used to identify Tanzanian musgravite are situated at 412 and 713 cm<sup>−1</sup>, whereas for taaffeite, the significant bands were detected at 416 and 761 cm<sup>−1</sup>. The distinct ATR bands observed at 773 cm<sup>−1</sup>, corresponding to the vibration of Al–O, can be efficiently utilized as indications to differentiate Tanzanian musgravite from taaffeite. The results prove that ATR-FTIR spectroscopy, like Raman spectroscopy, is a very effective non-invasive method for rapidly distinguishing these precious gemstones.</p></div>\",\"PeriodicalId\":23656,\"journal\":{\"name\":\"Vibrational Spectroscopy\",\"volume\":\"135 \",\"pages\":\"Article 103733\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vibrational Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924203124000869\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibrational Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924203124000869","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

太妃石(BeMg3Al8O16)和麝香石(Be(Mg,Fe,Zn)2Al6O12)是世界上最稀有的两种宝石,它们的稀有性大大提升了它们的非凡价值。由于它们的物理特性几乎完全相同,考虑到它们同属一个矿物家族,使用基本的宝石学设备对这两种宝石进行鉴别是极其困难的。区分这两类宝石至关重要,因为它们的稀有程度有很大差异,这极大地影响了它们的市场定价。在本文中,ATR-傅立叶变换红外光谱首次成功地将坦桑尼亚的麝香石和塔夫石区分开来。此外,还采用拉曼光谱和 EPMA 对麝香石和太妃石标本进行了鉴定。EPMA 结果证实,所调查的坦桑尼亚宝石与其他来源发现的同类宝石具有相似的元素组成。在 ATR 和拉曼光谱中观察到的峰值可作为区分麝香石和太妃石宝石的指标,目的是简化鉴定过程。对麝香石和太妃石的 ATR 和拉曼光谱进行了全面分析,发现是可以实现的。用于鉴别坦桑尼亚麝香石的主要拉曼光谱带位于 412 和 713 cm-1,而taaffeite 的重要光谱带则位于 416 和 761 cm-1。在 773 cm-1 处观察到的明显的 ATR 波段与 Al-O 的振动相对应,可以有效地用作区分坦桑尼亚麝香石和塔菲特的指标。结果证明,ATR-傅立叶变换红外光谱与拉曼光谱一样,是快速区分这些珍贵宝石的一种非常有效的非侵入式方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient identification and distinction of musgravite and taaffeite with the utilization of ATR-FTIR spectroscopy and Raman spectroscopy

Taaffeite (BeMg3Al8O16) and musgravite (Be(Mg,Fe,Zn)2Al6O12) are two of the rarest gem kinds worldwide, and their scarcity greatly enhances their extraordinary worth. Due to their nearly matched physical properties, discriminating between the two gems using basic gemological equipment will be exceedingly difficult, considering that they both belong to the same mineral family. Distinguishing between these two categories is crucial due to the substantial variation in their rarity levels, which greatly impacts on their market pricing. Nevertheless, there is a lack of published data in the scientific literature about the spectroscopic characterization of musgravite and taaffeite.

In this article, ATR-FTIR spectroscopy successfully distinguished Tanzanian musgravite from taaffeite for the first time. In addition, Raman spectroscopy and EPMA are employed for the identification of musgravite and taaffeite specimens. The EPMA results confirm that the Tanzanian gems under investigation have similar elemental compositions to those of the same kinds of stones discovered from other sources. The peaks observed in the ATR and Raman spectra serve as indicators for distinguishing between musgravite and taaffeite gemstones, with the goal of simplifying the identification process. The ATR and Raman spectra of musgravite and taaffeite are comprehensively analyzed and found to be achievable. The main Raman bands used to identify Tanzanian musgravite are situated at 412 and 713 cm−1, whereas for taaffeite, the significant bands were detected at 416 and 761 cm−1. The distinct ATR bands observed at 773 cm−1, corresponding to the vibration of Al–O, can be efficiently utilized as indications to differentiate Tanzanian musgravite from taaffeite. The results prove that ATR-FTIR spectroscopy, like Raman spectroscopy, is a very effective non-invasive method for rapidly distinguishing these precious gemstones.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Vibrational Spectroscopy
Vibrational Spectroscopy 化学-分析化学
CiteScore
4.70
自引率
4.00%
发文量
103
审稿时长
52 days
期刊介绍: Vibrational Spectroscopy provides a vehicle for the publication of original research that focuses on vibrational spectroscopy. This covers infrared, near-infrared and Raman spectroscopies and publishes papers dealing with developments in applications, theory, techniques and instrumentation. The topics covered by the journal include: Sampling techniques, Vibrational spectroscopy coupled with separation techniques, Instrumentation (Fourier transform, conventional and laser based), Data manipulation, Spectra-structure correlation and group frequencies. The application areas covered include: Analytical chemistry, Bio-organic and bio-inorganic chemistry, Organic chemistry, Inorganic chemistry, Catalysis, Environmental science, Industrial chemistry, Materials science, Physical chemistry, Polymer science, Process control, Specialized problem solving.
期刊最新文献
Harnessing the past: Vibration analysis of organic additives in ancient plasters for sustainable building solutions Research on vehicle-mounted measurement of NO2 based on cavity ring-down spectroscopy The infrared spectra of primary amides, Part 2. Deuteration of benzamide and hydrogen bonding effects of ortho alkoxybenzamides Diagnosis of corn leaf diseases by FTIR spectroscopy combined with machine learning Evaluating the thermal stability of hazelnut oil in comparison with common edible oils in Turkey using ATR infrared spectroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1