Fabián Guerrero , Lorena Espinoza , Camilo Carmona , Melisa Blackhall , Carolina Quintero , Korina Ocampo-Zuleta , Susana Paula , Javier Madrigal , Mercedes Guijarro , Yulian Carrasco , Marcela A. Bustamante-Sánchez , Alejandro Miranda , Karen Yáñez , Jan Bergmann , Lautaro Taborga , Mario Toledo
{"title":"揭示植物易燃性的化学原理:探索挥发性次生代谢物在萜烯以外的作用","authors":"Fabián Guerrero , Lorena Espinoza , Camilo Carmona , Melisa Blackhall , Carolina Quintero , Korina Ocampo-Zuleta , Susana Paula , Javier Madrigal , Mercedes Guijarro , Yulian Carrasco , Marcela A. Bustamante-Sánchez , Alejandro Miranda , Karen Yáñez , Jan Bergmann , Lautaro Taborga , Mario Toledo","doi":"10.1016/j.foreco.2024.122269","DOIUrl":null,"url":null,"abstract":"<div><p>Plant flammability research has proven pivotal in comprehending the contribution of vegetation to the flammability of forest ecosystems. Yet, the relationship between many leaf chemical traits and plant flammability is poorly understood. While terpenes and some leaf nutrients in plants have been extensively studied for their role in flammability, a wide array of other secondary metabolites remain unexplored in this context. Here, we present the volatile secondary metabolites composition of fresh leaves from nine dominant species from central Chile, both native and exotic, and determine whether there is variability within and among species in chemical composition and flammability. Moreover, we investigate how these compounds influence various leaf flammability traits. The Chilean Mediterranean ecosystem emerges as a useful study site given its unique endemic flora, increased frequency of forest fires, proliferation of invasive plants and extensive land conversion that favors the spread of fire-prone exotic species, and significant scarcity of phytochemical research dedicated to this ecosystem. A total of 118 volatile chemical compounds were quantified, belonging to over ten groups of volatile secondary metabolites. Terpenes, ketones, and hydrocarbons comprised 75 % of these compounds, and each species displayed a unique phytochemical profile. Surprisingly, some native species (<em>Citronella mucronata</em>, <em>Cryptocarya alba</em>) exhibited equivalent or higher leaf flammability than the well-known flammable exotics <em>Eucalyptus globulus</em> and <em>Pinus radiata</em>, respectively. Leaf flammability was best explained by the concentration of aldehydes, ketones, green leaf volatiles, and aromatic compounds. Interestingly, terpenes as well as moisture content were not significantly correlated with flammability. In conclusion, our results highlight the importance of considering a broader range of phytochemicals, beyond terpenes, to fully understand leaf flammability among species. Consequently, a deeper understanding -within and across ecosystems- of the influence exerted by diverse groups of phytochemicals on flammability is an urgent need for forest management planning in an increasingly flammable world.</p></div>","PeriodicalId":12350,"journal":{"name":"Forest Ecology and Management","volume":"572 ","pages":"Article 122269"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling the chemistry of plant flammability: Exploring the role of volatile secondary metabolites beyond terpenes\",\"authors\":\"Fabián Guerrero , Lorena Espinoza , Camilo Carmona , Melisa Blackhall , Carolina Quintero , Korina Ocampo-Zuleta , Susana Paula , Javier Madrigal , Mercedes Guijarro , Yulian Carrasco , Marcela A. Bustamante-Sánchez , Alejandro Miranda , Karen Yáñez , Jan Bergmann , Lautaro Taborga , Mario Toledo\",\"doi\":\"10.1016/j.foreco.2024.122269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Plant flammability research has proven pivotal in comprehending the contribution of vegetation to the flammability of forest ecosystems. Yet, the relationship between many leaf chemical traits and plant flammability is poorly understood. While terpenes and some leaf nutrients in plants have been extensively studied for their role in flammability, a wide array of other secondary metabolites remain unexplored in this context. Here, we present the volatile secondary metabolites composition of fresh leaves from nine dominant species from central Chile, both native and exotic, and determine whether there is variability within and among species in chemical composition and flammability. Moreover, we investigate how these compounds influence various leaf flammability traits. The Chilean Mediterranean ecosystem emerges as a useful study site given its unique endemic flora, increased frequency of forest fires, proliferation of invasive plants and extensive land conversion that favors the spread of fire-prone exotic species, and significant scarcity of phytochemical research dedicated to this ecosystem. A total of 118 volatile chemical compounds were quantified, belonging to over ten groups of volatile secondary metabolites. Terpenes, ketones, and hydrocarbons comprised 75 % of these compounds, and each species displayed a unique phytochemical profile. Surprisingly, some native species (<em>Citronella mucronata</em>, <em>Cryptocarya alba</em>) exhibited equivalent or higher leaf flammability than the well-known flammable exotics <em>Eucalyptus globulus</em> and <em>Pinus radiata</em>, respectively. Leaf flammability was best explained by the concentration of aldehydes, ketones, green leaf volatiles, and aromatic compounds. Interestingly, terpenes as well as moisture content were not significantly correlated with flammability. In conclusion, our results highlight the importance of considering a broader range of phytochemicals, beyond terpenes, to fully understand leaf flammability among species. Consequently, a deeper understanding -within and across ecosystems- of the influence exerted by diverse groups of phytochemicals on flammability is an urgent need for forest management planning in an increasingly flammable world.</p></div>\",\"PeriodicalId\":12350,\"journal\":{\"name\":\"Forest Ecology and Management\",\"volume\":\"572 \",\"pages\":\"Article 122269\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forest Ecology and Management\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378112724005814\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Ecology and Management","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378112724005814","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Unraveling the chemistry of plant flammability: Exploring the role of volatile secondary metabolites beyond terpenes
Plant flammability research has proven pivotal in comprehending the contribution of vegetation to the flammability of forest ecosystems. Yet, the relationship between many leaf chemical traits and plant flammability is poorly understood. While terpenes and some leaf nutrients in plants have been extensively studied for their role in flammability, a wide array of other secondary metabolites remain unexplored in this context. Here, we present the volatile secondary metabolites composition of fresh leaves from nine dominant species from central Chile, both native and exotic, and determine whether there is variability within and among species in chemical composition and flammability. Moreover, we investigate how these compounds influence various leaf flammability traits. The Chilean Mediterranean ecosystem emerges as a useful study site given its unique endemic flora, increased frequency of forest fires, proliferation of invasive plants and extensive land conversion that favors the spread of fire-prone exotic species, and significant scarcity of phytochemical research dedicated to this ecosystem. A total of 118 volatile chemical compounds were quantified, belonging to over ten groups of volatile secondary metabolites. Terpenes, ketones, and hydrocarbons comprised 75 % of these compounds, and each species displayed a unique phytochemical profile. Surprisingly, some native species (Citronella mucronata, Cryptocarya alba) exhibited equivalent or higher leaf flammability than the well-known flammable exotics Eucalyptus globulus and Pinus radiata, respectively. Leaf flammability was best explained by the concentration of aldehydes, ketones, green leaf volatiles, and aromatic compounds. Interestingly, terpenes as well as moisture content were not significantly correlated with flammability. In conclusion, our results highlight the importance of considering a broader range of phytochemicals, beyond terpenes, to fully understand leaf flammability among species. Consequently, a deeper understanding -within and across ecosystems- of the influence exerted by diverse groups of phytochemicals on flammability is an urgent need for forest management planning in an increasingly flammable world.
期刊介绍:
Forest Ecology and Management publishes scientific articles linking forest ecology with forest management, focusing on the application of biological, ecological and social knowledge to the management and conservation of plantations and natural forests. The scope of the journal includes all forest ecosystems of the world.
A peer-review process ensures the quality and international interest of the manuscripts accepted for publication. The journal encourages communication between scientists in disparate fields who share a common interest in ecology and forest management, bridging the gap between research workers and forest managers.
We encourage submission of papers that will have the strongest interest and value to the Journal''s international readership. Some key features of papers with strong interest include:
1. Clear connections between the ecology and management of forests;
2. Novel ideas or approaches to important challenges in forest ecology and management;
3. Studies that address a population of interest beyond the scale of single research sites, Three key points in the design of forest experiments, Forest Ecology and Management 255 (2008) 2022-2023);
4. Review Articles on timely, important topics. Authors are welcome to contact one of the editors to discuss the suitability of a potential review manuscript.
The Journal encourages proposals for special issues examining important areas of forest ecology and management. Potential guest editors should contact any of the Editors to begin discussions about topics, potential papers, and other details.