{"title":"使用 1070 纳米干扰滤波器和传统红外滤波器组,在近红外环境中实现 CMOS 传感器的诊断功能","authors":"Paolo A.M. Triolo","doi":"10.1016/j.culher.2024.08.007","DOIUrl":null,"url":null,"abstract":"<div><p>NIR reflectography with silicon sensors (CMOS) is commonly acquired with 780 nm band-pass filters that allow the acquisition of clear images and high shutter speeds, while maintaining a low equipment cost. In this way, however, acquisition between 1000 nm and 1150nm-where the silicon sensor is still formally infrared sensitive-is in fact overhelmed by the stronger sensitivity in the infrared spectrum portion between 780 nm and 980 nm. Coupling a 1070 nm (± 5 nm) interferencial filter to an 87C nm IR pass filter (FHWH 850 nm) acquisitions in this portion of the NIR spectrum were carried out, witnessing a outstanding increase in visibility of underdrawings and pentimenti. A practical test of the effectiveness of the filters system mounted on the Nikon D800 IRUV was made, comparing the results with those obtained by the “Osiris” InGaAs detector by Opus Instruments. The comparison was performed on the “Deposition” (oil on panel) by Antonio Semino (1485–1555) in the collection of the Accademia Ligustica of Genoa, highlighting a significant qualitative proximity between the results obtained with the interference system and those with InGaAs detector, compared to the conventional acquisition with single IR long-pass filter.</p><p>In addition, the 1070nm+87C filter system was used to increase the recognition capability of azurite pigments. This procedure widens the possibilities of first-impact diagnostics by means of low-cost and market available imaging systems based on commercial CMOS IRUV cameras..</p></div>","PeriodicalId":15480,"journal":{"name":"Journal of Cultural Heritage","volume":"70 ","pages":"Pages 54-63"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1296207424001729/pdfft?md5=f74aaf7f7fbf798fc5f86f692d3bb545&pid=1-s2.0-S1296207424001729-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Implementation of the diagnostic capabilities of the CMOS sensor in the NIR environment, using 1070 nm interference filter and a conventional IR-pass filters set\",\"authors\":\"Paolo A.M. Triolo\",\"doi\":\"10.1016/j.culher.2024.08.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>NIR reflectography with silicon sensors (CMOS) is commonly acquired with 780 nm band-pass filters that allow the acquisition of clear images and high shutter speeds, while maintaining a low equipment cost. In this way, however, acquisition between 1000 nm and 1150nm-where the silicon sensor is still formally infrared sensitive-is in fact overhelmed by the stronger sensitivity in the infrared spectrum portion between 780 nm and 980 nm. Coupling a 1070 nm (± 5 nm) interferencial filter to an 87C nm IR pass filter (FHWH 850 nm) acquisitions in this portion of the NIR spectrum were carried out, witnessing a outstanding increase in visibility of underdrawings and pentimenti. A practical test of the effectiveness of the filters system mounted on the Nikon D800 IRUV was made, comparing the results with those obtained by the “Osiris” InGaAs detector by Opus Instruments. The comparison was performed on the “Deposition” (oil on panel) by Antonio Semino (1485–1555) in the collection of the Accademia Ligustica of Genoa, highlighting a significant qualitative proximity between the results obtained with the interference system and those with InGaAs detector, compared to the conventional acquisition with single IR long-pass filter.</p><p>In addition, the 1070nm+87C filter system was used to increase the recognition capability of azurite pigments. This procedure widens the possibilities of first-impact diagnostics by means of low-cost and market available imaging systems based on commercial CMOS IRUV cameras..</p></div>\",\"PeriodicalId\":15480,\"journal\":{\"name\":\"Journal of Cultural Heritage\",\"volume\":\"70 \",\"pages\":\"Pages 54-63\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1296207424001729/pdfft?md5=f74aaf7f7fbf798fc5f86f692d3bb545&pid=1-s2.0-S1296207424001729-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cultural Heritage\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1296207424001729\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ARCHAEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cultural Heritage","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1296207424001729","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHAEOLOGY","Score":null,"Total":0}
Implementation of the diagnostic capabilities of the CMOS sensor in the NIR environment, using 1070 nm interference filter and a conventional IR-pass filters set
NIR reflectography with silicon sensors (CMOS) is commonly acquired with 780 nm band-pass filters that allow the acquisition of clear images and high shutter speeds, while maintaining a low equipment cost. In this way, however, acquisition between 1000 nm and 1150nm-where the silicon sensor is still formally infrared sensitive-is in fact overhelmed by the stronger sensitivity in the infrared spectrum portion between 780 nm and 980 nm. Coupling a 1070 nm (± 5 nm) interferencial filter to an 87C nm IR pass filter (FHWH 850 nm) acquisitions in this portion of the NIR spectrum were carried out, witnessing a outstanding increase in visibility of underdrawings and pentimenti. A practical test of the effectiveness of the filters system mounted on the Nikon D800 IRUV was made, comparing the results with those obtained by the “Osiris” InGaAs detector by Opus Instruments. The comparison was performed on the “Deposition” (oil on panel) by Antonio Semino (1485–1555) in the collection of the Accademia Ligustica of Genoa, highlighting a significant qualitative proximity between the results obtained with the interference system and those with InGaAs detector, compared to the conventional acquisition with single IR long-pass filter.
In addition, the 1070nm+87C filter system was used to increase the recognition capability of azurite pigments. This procedure widens the possibilities of first-impact diagnostics by means of low-cost and market available imaging systems based on commercial CMOS IRUV cameras..
期刊介绍:
The Journal of Cultural Heritage publishes original papers which comprise previously unpublished data and present innovative methods concerning all aspects of science and technology of cultural heritage as well as interpretation and theoretical issues related to preservation.