{"title":"二氧化碳/甲苯/聚乙二醇三元体系的相行为","authors":"Hiroaki Matsukawa , Ryota Suzuki , Katsuto Otake","doi":"10.1016/j.fluid.2024.114227","DOIUrl":null,"url":null,"abstract":"<div><p>The phase behavior of a carbon dioxide (CO<sub>2</sub>)/toluene (Tol)/poly(ethylene glycol) (PEG) ternary system was investigated in this study to consider the effect of the polymer species on the phase diagram. Measurements were performed using a synthetic method combined with laser displacement and turbidity measurements. Bubble points (vapor–liquid phase separation) were determined from changes in the piston displacement and cloud points (liquid–liquid (LL) phase separation) were determined from changes in the turbidity. The phase boundaries of the CO<sub>2</sub> mass fractions ranging from 0.113 to 0.496 were measured by varying the Tol/PEG mass ratio. The homogeneous phase area decreased when the mass ratio of PEG to Tol increased and/or the temperature decreased. These changes in the LL phase-separation behavior were explained by referring to the free volume fraction and solubility parameter estimated using the Sanchez–Lacombe equation of state. The free volume integral fraction could explain the phase diagram, but not the solubility parameter; the effect of polymer species on the <em>Px</em> phase diagram of the ternary system was explained by considering specific interactions between dissimilar components. These results could promote a comprehensive understanding of the phase diagram of CO<sub>2</sub>/organic solvent/polymer systems and aid the prediction of phase behavior.</p></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"588 ","pages":"Article 114227"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase behavior of the carbon dioxide/toluene/poly(ethylene glycol) ternary system\",\"authors\":\"Hiroaki Matsukawa , Ryota Suzuki , Katsuto Otake\",\"doi\":\"10.1016/j.fluid.2024.114227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The phase behavior of a carbon dioxide (CO<sub>2</sub>)/toluene (Tol)/poly(ethylene glycol) (PEG) ternary system was investigated in this study to consider the effect of the polymer species on the phase diagram. Measurements were performed using a synthetic method combined with laser displacement and turbidity measurements. Bubble points (vapor–liquid phase separation) were determined from changes in the piston displacement and cloud points (liquid–liquid (LL) phase separation) were determined from changes in the turbidity. The phase boundaries of the CO<sub>2</sub> mass fractions ranging from 0.113 to 0.496 were measured by varying the Tol/PEG mass ratio. The homogeneous phase area decreased when the mass ratio of PEG to Tol increased and/or the temperature decreased. These changes in the LL phase-separation behavior were explained by referring to the free volume fraction and solubility parameter estimated using the Sanchez–Lacombe equation of state. The free volume integral fraction could explain the phase diagram, but not the solubility parameter; the effect of polymer species on the <em>Px</em> phase diagram of the ternary system was explained by considering specific interactions between dissimilar components. These results could promote a comprehensive understanding of the phase diagram of CO<sub>2</sub>/organic solvent/polymer systems and aid the prediction of phase behavior.</p></div>\",\"PeriodicalId\":12170,\"journal\":{\"name\":\"Fluid Phase Equilibria\",\"volume\":\"588 \",\"pages\":\"Article 114227\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Phase Equilibria\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378381224002024\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378381224002024","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Phase behavior of the carbon dioxide/toluene/poly(ethylene glycol) ternary system
The phase behavior of a carbon dioxide (CO2)/toluene (Tol)/poly(ethylene glycol) (PEG) ternary system was investigated in this study to consider the effect of the polymer species on the phase diagram. Measurements were performed using a synthetic method combined with laser displacement and turbidity measurements. Bubble points (vapor–liquid phase separation) were determined from changes in the piston displacement and cloud points (liquid–liquid (LL) phase separation) were determined from changes in the turbidity. The phase boundaries of the CO2 mass fractions ranging from 0.113 to 0.496 were measured by varying the Tol/PEG mass ratio. The homogeneous phase area decreased when the mass ratio of PEG to Tol increased and/or the temperature decreased. These changes in the LL phase-separation behavior were explained by referring to the free volume fraction and solubility parameter estimated using the Sanchez–Lacombe equation of state. The free volume integral fraction could explain the phase diagram, but not the solubility parameter; the effect of polymer species on the Px phase diagram of the ternary system was explained by considering specific interactions between dissimilar components. These results could promote a comprehensive understanding of the phase diagram of CO2/organic solvent/polymer systems and aid the prediction of phase behavior.
期刊介绍:
Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results.
Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.