Yihao Ma , Rui Mao , Cuicui Shi , Xingya Feng , Li Ma , Xingyu Song
{"title":"1987-2022 年间蒙古到中国的跨境沙尘暴不断增加","authors":"Yihao Ma , Rui Mao , Cuicui Shi , Xingya Feng , Li Ma , Xingyu Song","doi":"10.1016/j.gloplacha.2024.104578","DOIUrl":null,"url":null,"abstract":"<div><p>Mongolia and northern China have the highest frequency of dust weather in Northeast Asia. Dust transport from Mongolia to China is a major cause of dust weather in northern China. However, there has been limited research on the frequency changes of cross-border dust storms from Mongolia to China over the past few decades. Based on observational data, we analyzed the variation in cross-border dust storms between China and Mongolia during 1987–2022. The results indicate that, on average, approximately seven cross-border dust storm events occur annually between China and Mongolia, predominantly during the spring. The frequency of cross-border dust storms from Mongolia to China significantly increased from 2.2 events in P1 (1987–1999) to 7.5 events in P2 (2000−2022). Long-term trends suggest that rising dust emissions in east-central Mongolia largely contributed to this increase. The increase in cross-border dust storms from Mongolia to China in the spring was driven by more frequent cyclones in eastern Mongolia and Northeast China during P2. This is evidenced by a negative height anomaly and increased vorticity at 850 hPa over Northeast China. The cyclones were linked to the northward shift of the East Asian Polar Front Jet Stream (EAPJ) at 300 hPa between 50<strong>°</strong>N and 60<strong>°</strong>N. Additionally, surface conditions such as higher temperatures and decreased vegetation in Mongolia contributed to the increased frequency of cross-border dust storms from P1 to P2.</p></div>","PeriodicalId":55089,"journal":{"name":"Global and Planetary Change","volume":"242 ","pages":"Article 104578"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Increasing cross-border dust storm from Mongolia to China during 1987–2022\",\"authors\":\"Yihao Ma , Rui Mao , Cuicui Shi , Xingya Feng , Li Ma , Xingyu Song\",\"doi\":\"10.1016/j.gloplacha.2024.104578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mongolia and northern China have the highest frequency of dust weather in Northeast Asia. Dust transport from Mongolia to China is a major cause of dust weather in northern China. However, there has been limited research on the frequency changes of cross-border dust storms from Mongolia to China over the past few decades. Based on observational data, we analyzed the variation in cross-border dust storms between China and Mongolia during 1987–2022. The results indicate that, on average, approximately seven cross-border dust storm events occur annually between China and Mongolia, predominantly during the spring. The frequency of cross-border dust storms from Mongolia to China significantly increased from 2.2 events in P1 (1987–1999) to 7.5 events in P2 (2000−2022). Long-term trends suggest that rising dust emissions in east-central Mongolia largely contributed to this increase. The increase in cross-border dust storms from Mongolia to China in the spring was driven by more frequent cyclones in eastern Mongolia and Northeast China during P2. This is evidenced by a negative height anomaly and increased vorticity at 850 hPa over Northeast China. The cyclones were linked to the northward shift of the East Asian Polar Front Jet Stream (EAPJ) at 300 hPa between 50<strong>°</strong>N and 60<strong>°</strong>N. Additionally, surface conditions such as higher temperatures and decreased vegetation in Mongolia contributed to the increased frequency of cross-border dust storms from P1 to P2.</p></div>\",\"PeriodicalId\":55089,\"journal\":{\"name\":\"Global and Planetary Change\",\"volume\":\"242 \",\"pages\":\"Article 104578\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global and Planetary Change\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092181812400225X\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global and Planetary Change","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092181812400225X","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Increasing cross-border dust storm from Mongolia to China during 1987–2022
Mongolia and northern China have the highest frequency of dust weather in Northeast Asia. Dust transport from Mongolia to China is a major cause of dust weather in northern China. However, there has been limited research on the frequency changes of cross-border dust storms from Mongolia to China over the past few decades. Based on observational data, we analyzed the variation in cross-border dust storms between China and Mongolia during 1987–2022. The results indicate that, on average, approximately seven cross-border dust storm events occur annually between China and Mongolia, predominantly during the spring. The frequency of cross-border dust storms from Mongolia to China significantly increased from 2.2 events in P1 (1987–1999) to 7.5 events in P2 (2000−2022). Long-term trends suggest that rising dust emissions in east-central Mongolia largely contributed to this increase. The increase in cross-border dust storms from Mongolia to China in the spring was driven by more frequent cyclones in eastern Mongolia and Northeast China during P2. This is evidenced by a negative height anomaly and increased vorticity at 850 hPa over Northeast China. The cyclones were linked to the northward shift of the East Asian Polar Front Jet Stream (EAPJ) at 300 hPa between 50°N and 60°N. Additionally, surface conditions such as higher temperatures and decreased vegetation in Mongolia contributed to the increased frequency of cross-border dust storms from P1 to P2.
期刊介绍:
The objective of the journal Global and Planetary Change is to provide a multi-disciplinary overview of the processes taking place in the Earth System and involved in planetary change over time. The journal focuses on records of the past and current state of the earth system, and future scenarios , and their link to global environmental change. Regional or process-oriented studies are welcome if they discuss global implications. Topics include, but are not limited to, changes in the dynamics and composition of the atmosphere, oceans and cryosphere, as well as climate change, sea level variation, observations/modelling of Earth processes from deep to (near-)surface and their coupling, global ecology, biogeography and the resilience/thresholds in ecosystems.
Key criteria for the consideration of manuscripts are (a) the relevance for the global scientific community and/or (b) the wider implications for global scale problems, preferably combined with (c) having a significance beyond a single discipline. A clear focus on key processes associated with planetary scale change is strongly encouraged.
Manuscripts can be submitted as either research contributions or as a review article. Every effort should be made towards the presentation of research outcomes in an understandable way for a broad readership.