可生物降解表面活性剂作为膜分离装置工艺中冷轧钢板缓蚀剂的研究

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2024-09-07 DOI:10.1016/j.jcis.2024.09.029
{"title":"可生物降解表面活性剂作为膜分离装置工艺中冷轧钢板缓蚀剂的研究","authors":"","doi":"10.1016/j.jcis.2024.09.029","DOIUrl":null,"url":null,"abstract":"<div><p>The membrane process is an effective way to realize resource reutilization. Most membrane devices are made of cold-roll steel (CRS), which is easy to corrode when operating in acid conditions. Herein, the biodegradable surfactant dodecyl dimethyl betaine (BS-12) was used as the inhibitor to protect the CRS in the trichloroacetic acid (TCA) solution. The long-term stability membrane tests showed that adding BS-12 will not harm the membrane performance. The weight loss experiments proved that adding BS-12 with trace amount (10 mg·L<sup>−1</sup>) endowed the CRS with good inhibition efficiency (95.3 %). The electrochemical tests indicated that the mixed inhibitor- BS-12 works by inhibiting the anode and cathode simultaneously, and the polarization resistance increased to 21 times. The SEM, AFM, and CLSM tests proved that adding BS-12 enabled the CRS surface to remain stable. The FTIR and XPS tests proved that BS-12 adsorbed on the CRS surface via physical and chemical adsorption. The theoretical calculations proved the horizontal adsorption of BS-12 on the CRS surface and the existence of the electron transfer within the BS-12 and CRS. The BS-12 showed great potential in the CRS inhibition of the membrane separation and purification processing.</p></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of biodegradable surfactant as a corrosion inhibitor to the cold rolled steel in the membrane separation device process\",\"authors\":\"\",\"doi\":\"10.1016/j.jcis.2024.09.029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The membrane process is an effective way to realize resource reutilization. Most membrane devices are made of cold-roll steel (CRS), which is easy to corrode when operating in acid conditions. Herein, the biodegradable surfactant dodecyl dimethyl betaine (BS-12) was used as the inhibitor to protect the CRS in the trichloroacetic acid (TCA) solution. The long-term stability membrane tests showed that adding BS-12 will not harm the membrane performance. The weight loss experiments proved that adding BS-12 with trace amount (10 mg·L<sup>−1</sup>) endowed the CRS with good inhibition efficiency (95.3 %). The electrochemical tests indicated that the mixed inhibitor- BS-12 works by inhibiting the anode and cathode simultaneously, and the polarization resistance increased to 21 times. The SEM, AFM, and CLSM tests proved that adding BS-12 enabled the CRS surface to remain stable. The FTIR and XPS tests proved that BS-12 adsorbed on the CRS surface via physical and chemical adsorption. The theoretical calculations proved the horizontal adsorption of BS-12 on the CRS surface and the existence of the electron transfer within the BS-12 and CRS. The BS-12 showed great potential in the CRS inhibition of the membrane separation and purification processing.</p></div>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021979724020873\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724020873","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

膜工艺是实现资源再利用的有效途径。大多数膜装置由冷轧钢(CRS)制成,在酸性条件下运行时容易腐蚀。本文采用可生物降解的表面活性剂十二烷基二甲基甜菜碱(BS-12)作为抑制剂,以保护三氯乙酸(TCA)溶液中的 CRS。长期稳定性膜测试表明,添加 BS-12 不会损害膜的性能。失重实验证明,添加痕量(10 mg-L-1)的 BS-12 赋予了 CRS 良好的抑制效率(95.3%)。电化学测试表明,混合抑制剂 BS-12 可同时抑制阳极和阴极,极化电阻增加了 21 倍。SEM、AFM 和 CLSM 测试证明,添加 BS-12 可使 CRS 表面保持稳定。傅立叶变换红外光谱和 XPS 测试证明,BS-12 通过物理和化学吸附作用吸附在 CRS 表面。理论计算证明了 BS-12 在 CRS 表面的水平吸附以及 BS-12 和 CRS 内部电子传递的存在。BS-12 在膜分离和纯化处理的 CRS 抑制方面显示出巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of biodegradable surfactant as a corrosion inhibitor to the cold rolled steel in the membrane separation device process

The membrane process is an effective way to realize resource reutilization. Most membrane devices are made of cold-roll steel (CRS), which is easy to corrode when operating in acid conditions. Herein, the biodegradable surfactant dodecyl dimethyl betaine (BS-12) was used as the inhibitor to protect the CRS in the trichloroacetic acid (TCA) solution. The long-term stability membrane tests showed that adding BS-12 will not harm the membrane performance. The weight loss experiments proved that adding BS-12 with trace amount (10 mg·L−1) endowed the CRS with good inhibition efficiency (95.3 %). The electrochemical tests indicated that the mixed inhibitor- BS-12 works by inhibiting the anode and cathode simultaneously, and the polarization resistance increased to 21 times. The SEM, AFM, and CLSM tests proved that adding BS-12 enabled the CRS surface to remain stable. The FTIR and XPS tests proved that BS-12 adsorbed on the CRS surface via physical and chemical adsorption. The theoretical calculations proved the horizontal adsorption of BS-12 on the CRS surface and the existence of the electron transfer within the BS-12 and CRS. The BS-12 showed great potential in the CRS inhibition of the membrane separation and purification processing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
Dendrite-free zinc metal anode for long-life zinc-ion batteries enabled by an artificial hydrophobic-zincophilic coating. Bioderived carbon aerogels loaded with g-C3N4 and their high Efficacy removing volatile organic compounds (VOCs). Crosslinking modification of starch improves the structural stability of hard carbon anodes for high-capacity sodium storage. Interfacial design of pyrene-based covalent organic framework for overall photocatalytic H2O2 synthesis in water. LaCo0.95Mo0.05O3/CeO2 composite can promote the effective activation of peroxymonosulfate via Co3+/Co2+ cycle and realize the efficient degradation of hydroxychloroquine sulfate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1