{"title":"热加工对水下粘合剂用聚脲微胶囊完整性的影响","authors":"","doi":"10.1016/j.ijadhadh.2024.103838","DOIUrl":null,"url":null,"abstract":"<div><p>Adhesives that rely on a curing mechanism struggle to function in underwater environments due to detrimental interactions with water. One strategy to overcome this involves protecting sensitive components in mechanically responsive microcapsules. In this way, a two-part adhesive can be achieved via a single mixture, applied as one would apply a pressure sensitive adhesive. This work focused on improving polyurea microcapsule shell integrity, specifically focusing on the effect of additional thermal processing. The improved microcapsule shells displayed limited payload leakage with only an 8 % loss in pot life compared to the base isocyanate resin alone. A mixture of optimized microcapsules and isocyanate resin was evaluated against a wide range of substrates and conditions, including dry and wet environments. When microcapsules were intentionally ruptured to release the catalyst and crosslinker payload, the microcapsule-isocyanate mixture had improved adhesive strength (506 %) compared to the base isocyanate resin without microcapsules.</p></div>","PeriodicalId":13732,"journal":{"name":"International Journal of Adhesion and Adhesives","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of thermal processing on the integrity of polyurea microcapsules for underwater adhesives\",\"authors\":\"\",\"doi\":\"10.1016/j.ijadhadh.2024.103838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Adhesives that rely on a curing mechanism struggle to function in underwater environments due to detrimental interactions with water. One strategy to overcome this involves protecting sensitive components in mechanically responsive microcapsules. In this way, a two-part adhesive can be achieved via a single mixture, applied as one would apply a pressure sensitive adhesive. This work focused on improving polyurea microcapsule shell integrity, specifically focusing on the effect of additional thermal processing. The improved microcapsule shells displayed limited payload leakage with only an 8 % loss in pot life compared to the base isocyanate resin alone. A mixture of optimized microcapsules and isocyanate resin was evaluated against a wide range of substrates and conditions, including dry and wet environments. When microcapsules were intentionally ruptured to release the catalyst and crosslinker payload, the microcapsule-isocyanate mixture had improved adhesive strength (506 %) compared to the base isocyanate resin without microcapsules.</p></div>\",\"PeriodicalId\":13732,\"journal\":{\"name\":\"International Journal of Adhesion and Adhesives\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Adhesion and Adhesives\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143749624002203\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Adhesion and Adhesives","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143749624002203","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Effect of thermal processing on the integrity of polyurea microcapsules for underwater adhesives
Adhesives that rely on a curing mechanism struggle to function in underwater environments due to detrimental interactions with water. One strategy to overcome this involves protecting sensitive components in mechanically responsive microcapsules. In this way, a two-part adhesive can be achieved via a single mixture, applied as one would apply a pressure sensitive adhesive. This work focused on improving polyurea microcapsule shell integrity, specifically focusing on the effect of additional thermal processing. The improved microcapsule shells displayed limited payload leakage with only an 8 % loss in pot life compared to the base isocyanate resin alone. A mixture of optimized microcapsules and isocyanate resin was evaluated against a wide range of substrates and conditions, including dry and wet environments. When microcapsules were intentionally ruptured to release the catalyst and crosslinker payload, the microcapsule-isocyanate mixture had improved adhesive strength (506 %) compared to the base isocyanate resin without microcapsules.
期刊介绍:
The International Journal of Adhesion and Adhesives draws together the many aspects of the science and technology of adhesive materials, from fundamental research and development work to industrial applications. Subject areas covered include: interfacial interactions, surface chemistry, methods of testing, accumulation of test data on physical and mechanical properties, environmental effects, new adhesive materials, sealants, design of bonded joints, and manufacturing technology.