利用深度学习自动分割直肠乙状结肠深部子宫内膜异位症

IF 4.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Image and Vision Computing Pub Date : 2024-09-06 DOI:10.1016/j.imavis.2024.105261
{"title":"利用深度学习自动分割直肠乙状结肠深部子宫内膜异位症","authors":"","doi":"10.1016/j.imavis.2024.105261","DOIUrl":null,"url":null,"abstract":"<div><p>Endometriosis is an inflammatory disease that causes several symptoms, such as infertility and constant pain. While biopsy remains the gold standard for diagnosing endometriosis, imaging tests, particularly magnetic resonance, are becoming increasingly prominent, especially in cases of deep infiltrating disease. However, precise and accurate MRI results require a skilled radiologist. In this study, we employ our built dataset to propose an automated method for classifying patients with endometriosis and segmenting the endometriosis lesion in magnetic resonance images of the rectum and sigmoid colon using image processing and deep learning techniques. Our goals are to assist in the diagnosis, to map the extent of the disease before a surgical procedure, and to help reduce the need for invasive diagnostic methods. This method consists of the following steps: rectosigmoid ROI extraction, image classification, initial lesion segmentation, lesion ROI extraction, and final lesion segmentation. ROI extraction is employed to limit the area while searching for lesions. Using an ensemble of networks, classification of images and patients, with or without endometriosis, achieved accuracies of 87.46% and 96.67%, respectively. One of these networks is a proposed modification of VGG-16. The initial segmentation step produces candidate regions for lesions using TransUnet, achieving a Dice index of 51%. These regions serve as the basis for extracting a new ROI. In the final lesion segmentation, and also using TransUnet, we obtain a Dice index of 65.44%.</p></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic segmentation of deep endometriosis in the rectosigmoid using deep learning\",\"authors\":\"\",\"doi\":\"10.1016/j.imavis.2024.105261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Endometriosis is an inflammatory disease that causes several symptoms, such as infertility and constant pain. While biopsy remains the gold standard for diagnosing endometriosis, imaging tests, particularly magnetic resonance, are becoming increasingly prominent, especially in cases of deep infiltrating disease. However, precise and accurate MRI results require a skilled radiologist. In this study, we employ our built dataset to propose an automated method for classifying patients with endometriosis and segmenting the endometriosis lesion in magnetic resonance images of the rectum and sigmoid colon using image processing and deep learning techniques. Our goals are to assist in the diagnosis, to map the extent of the disease before a surgical procedure, and to help reduce the need for invasive diagnostic methods. This method consists of the following steps: rectosigmoid ROI extraction, image classification, initial lesion segmentation, lesion ROI extraction, and final lesion segmentation. ROI extraction is employed to limit the area while searching for lesions. Using an ensemble of networks, classification of images and patients, with or without endometriosis, achieved accuracies of 87.46% and 96.67%, respectively. One of these networks is a proposed modification of VGG-16. The initial segmentation step produces candidate regions for lesions using TransUnet, achieving a Dice index of 51%. These regions serve as the basis for extracting a new ROI. In the final lesion segmentation, and also using TransUnet, we obtain a Dice index of 65.44%.</p></div>\",\"PeriodicalId\":50374,\"journal\":{\"name\":\"Image and Vision Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image and Vision Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0262885624003664\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885624003664","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

子宫内膜异位症是一种炎症性疾病,会导致多种症状,如不孕和持续疼痛。虽然活组织检查仍是诊断子宫内膜异位症的金标准,但影像学检查,尤其是磁共振检查,正变得越来越重要,特别是在深部浸润性疾病的病例中。然而,精确的磁共振成像结果需要技术娴熟的放射科医生。在本研究中,我们利用建立的数据集提出了一种自动方法,利用图像处理和深度学习技术对子宫内膜异位症患者进行分类,并分割直肠和乙状结肠磁共振图像中的子宫内膜异位症病灶。我们的目标是协助诊断,在手术前绘制疾病范围图,并帮助减少对侵入性诊断方法的需求。该方法包括以下步骤:直肠乙状结肠 ROI 提取、图像分类、初始病灶分割、病灶 ROI 提取和最终病灶分割。提取 ROI 的目的是在搜索病灶时限制区域。使用网络组合对有或无子宫内膜异位症的图像和患者进行分类,准确率分别达到 87.46% 和 96.67%。其中一个网络是对 VGG-16 的修改。初始分割步骤使用 TransUnet 生成病变候选区域,Dice 指数达到 51%。这些区域是提取新 ROI 的基础。在最终的病变分割中,同样使用 TransUnet,我们获得了 65.44% 的 Dice 指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic segmentation of deep endometriosis in the rectosigmoid using deep learning

Endometriosis is an inflammatory disease that causes several symptoms, such as infertility and constant pain. While biopsy remains the gold standard for diagnosing endometriosis, imaging tests, particularly magnetic resonance, are becoming increasingly prominent, especially in cases of deep infiltrating disease. However, precise and accurate MRI results require a skilled radiologist. In this study, we employ our built dataset to propose an automated method for classifying patients with endometriosis and segmenting the endometriosis lesion in magnetic resonance images of the rectum and sigmoid colon using image processing and deep learning techniques. Our goals are to assist in the diagnosis, to map the extent of the disease before a surgical procedure, and to help reduce the need for invasive diagnostic methods. This method consists of the following steps: rectosigmoid ROI extraction, image classification, initial lesion segmentation, lesion ROI extraction, and final lesion segmentation. ROI extraction is employed to limit the area while searching for lesions. Using an ensemble of networks, classification of images and patients, with or without endometriosis, achieved accuracies of 87.46% and 96.67%, respectively. One of these networks is a proposed modification of VGG-16. The initial segmentation step produces candidate regions for lesions using TransUnet, achieving a Dice index of 51%. These regions serve as the basis for extracting a new ROI. In the final lesion segmentation, and also using TransUnet, we obtain a Dice index of 65.44%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Image and Vision Computing
Image and Vision Computing 工程技术-工程:电子与电气
CiteScore
8.50
自引率
8.50%
发文量
143
审稿时长
7.8 months
期刊介绍: Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.
期刊最新文献
A dictionary learning based unsupervised neural network for single image compressed sensing Unbiased scene graph generation via head-tail cooperative network with self-supervised learning UIR-ES: An unsupervised underwater image restoration framework with equivariance and stein unbiased risk estimator A new deepfake detection model for responding to perception attacks in embodied artificial intelligence Ground4Act: Leveraging visual-language model for collaborative pushing and grasping in clutter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1