Brandon J. King , Gemma J.M. Read , Paul M. Salmon
{"title":"前瞻性地确定先进脑机接口的风险和控制措施:网络化危害分析和风险管理系统(Net-HARMS)方法","authors":"Brandon J. King , Gemma J.M. Read , Paul M. Salmon","doi":"10.1016/j.apergo.2024.104382","DOIUrl":null,"url":null,"abstract":"<div><p>The introduction of advanced digital technologies continues to increase system complexity and introduce risks, which must be proactively identified and managed to support system resilience. Brain-computer interfaces (BCIs) are one such technology; however, the risks arising from broad societal use of the technology have yet to be identified and controlled. This study applied a structured systems thinking-based risk assessment method to prospectively identify risks and risk controls for a hypothetical future BCI system lifecycle. The application of the Networked Hazard Analysis and Risk Management System (Net-HARMS) method identified over 800 risks throughout the BCI system lifecycle, from BCI development and regulation through to BCI use, maintenance, and decommissioning. High-criticality risk themes include the implantation and degradation of unsafe BCIs, unsolicited brain stimulation, incorrect signals being sent to safety-critical technologies, and insufficiently supported BCI users. Over 600 risk controls were identified that could be implemented to support system safety and performance resilience. Overall, many highly-impactful BCI system safety and performance risks may arise throughout the BCI system lifecycle and will require collaborative efforts from a wide range of BCI stakeholders to adequately control. Whilst some of the identified controls are practical, work is required to develop a more systematic set of controls to best support the design of a resilient sociotechnical BCI system.</p></div>","PeriodicalId":55502,"journal":{"name":"Applied Ergonomics","volume":"122 ","pages":"Article 104382"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0003687024001595/pdfft?md5=abcf56f6a3cbfe698ad11bd54250be49&pid=1-s2.0-S0003687024001595-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Prospectively identifying risks and controls for advanced brain-computer interfaces: A Networked Hazard Analysis and Risk Management System (Net-HARMS) approach\",\"authors\":\"Brandon J. King , Gemma J.M. Read , Paul M. Salmon\",\"doi\":\"10.1016/j.apergo.2024.104382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The introduction of advanced digital technologies continues to increase system complexity and introduce risks, which must be proactively identified and managed to support system resilience. Brain-computer interfaces (BCIs) are one such technology; however, the risks arising from broad societal use of the technology have yet to be identified and controlled. This study applied a structured systems thinking-based risk assessment method to prospectively identify risks and risk controls for a hypothetical future BCI system lifecycle. The application of the Networked Hazard Analysis and Risk Management System (Net-HARMS) method identified over 800 risks throughout the BCI system lifecycle, from BCI development and regulation through to BCI use, maintenance, and decommissioning. High-criticality risk themes include the implantation and degradation of unsafe BCIs, unsolicited brain stimulation, incorrect signals being sent to safety-critical technologies, and insufficiently supported BCI users. Over 600 risk controls were identified that could be implemented to support system safety and performance resilience. Overall, many highly-impactful BCI system safety and performance risks may arise throughout the BCI system lifecycle and will require collaborative efforts from a wide range of BCI stakeholders to adequately control. Whilst some of the identified controls are practical, work is required to develop a more systematic set of controls to best support the design of a resilient sociotechnical BCI system.</p></div>\",\"PeriodicalId\":55502,\"journal\":{\"name\":\"Applied Ergonomics\",\"volume\":\"122 \",\"pages\":\"Article 104382\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0003687024001595/pdfft?md5=abcf56f6a3cbfe698ad11bd54250be49&pid=1-s2.0-S0003687024001595-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Ergonomics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003687024001595\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ergonomics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003687024001595","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Prospectively identifying risks and controls for advanced brain-computer interfaces: A Networked Hazard Analysis and Risk Management System (Net-HARMS) approach
The introduction of advanced digital technologies continues to increase system complexity and introduce risks, which must be proactively identified and managed to support system resilience. Brain-computer interfaces (BCIs) are one such technology; however, the risks arising from broad societal use of the technology have yet to be identified and controlled. This study applied a structured systems thinking-based risk assessment method to prospectively identify risks and risk controls for a hypothetical future BCI system lifecycle. The application of the Networked Hazard Analysis and Risk Management System (Net-HARMS) method identified over 800 risks throughout the BCI system lifecycle, from BCI development and regulation through to BCI use, maintenance, and decommissioning. High-criticality risk themes include the implantation and degradation of unsafe BCIs, unsolicited brain stimulation, incorrect signals being sent to safety-critical technologies, and insufficiently supported BCI users. Over 600 risk controls were identified that could be implemented to support system safety and performance resilience. Overall, many highly-impactful BCI system safety and performance risks may arise throughout the BCI system lifecycle and will require collaborative efforts from a wide range of BCI stakeholders to adequately control. Whilst some of the identified controls are practical, work is required to develop a more systematic set of controls to best support the design of a resilient sociotechnical BCI system.
期刊介绍:
Applied Ergonomics is aimed at ergonomists and all those interested in applying ergonomics/human factors in the design, planning and management of technical and social systems at work or leisure. Readership is truly international with subscribers in over 50 countries. Professionals for whom Applied Ergonomics is of interest include: ergonomists, designers, industrial engineers, health and safety specialists, systems engineers, design engineers, organizational psychologists, occupational health specialists and human-computer interaction specialists.