利用特征/矢量实体检索和消歧技术创建有监督和无监督的语义表解释方法

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Knowledge-Based Systems Pub Date : 2024-09-03 DOI:10.1016/j.knosys.2024.112447
Roberto Avogadro , Fabio D’Adda , Marco Cremaschi
{"title":"利用特征/矢量实体检索和消歧技术创建有监督和无监督的语义表解释方法","authors":"Roberto Avogadro ,&nbsp;Fabio D’Adda ,&nbsp;Marco Cremaschi","doi":"10.1016/j.knosys.2024.112447","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, there has been an increasing interest in extracting and annotating tables on the Web. This activity allows the transformation of textual data into machine-readable formats to enable the execution of various artificial intelligence tasks, <em>e</em>.<em>g</em>., semantic search and dataset extension. Semantic Table Interpretation (STI) is the process of annotating elements in a table. The paper explores Semantic Table Interpretation, addressing the challenges of Entity Retrieval and Entity Disambiguation in the context of Knowledge Graphs (KGs). It introduces <span>LamAPI</span>, an Information Retrieval system with string/type-based filtering and <span>s-elBat</span>, an Entity Disambiguation technique that combines heuristic and ML-based approaches. By applying the acquired know-how in the field and extracting algorithms, techniques and components from our previous STI approaches and the state of the art, we have created a new platform capable of annotating any tabular data, ensuring a high level of quality.</p></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0950705124010815/pdfft?md5=8d3dfa7f8b225ec64232afd60b447f26&pid=1-s2.0-S0950705124010815-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Feature/vector entity retrieval and disambiguation techniques to create a supervised and unsupervised semantic table interpretation approach\",\"authors\":\"Roberto Avogadro ,&nbsp;Fabio D’Adda ,&nbsp;Marco Cremaschi\",\"doi\":\"10.1016/j.knosys.2024.112447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently, there has been an increasing interest in extracting and annotating tables on the Web. This activity allows the transformation of textual data into machine-readable formats to enable the execution of various artificial intelligence tasks, <em>e</em>.<em>g</em>., semantic search and dataset extension. Semantic Table Interpretation (STI) is the process of annotating elements in a table. The paper explores Semantic Table Interpretation, addressing the challenges of Entity Retrieval and Entity Disambiguation in the context of Knowledge Graphs (KGs). It introduces <span>LamAPI</span>, an Information Retrieval system with string/type-based filtering and <span>s-elBat</span>, an Entity Disambiguation technique that combines heuristic and ML-based approaches. By applying the acquired know-how in the field and extracting algorithms, techniques and components from our previous STI approaches and the state of the art, we have created a new platform capable of annotating any tabular data, ensuring a high level of quality.</p></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0950705124010815/pdfft?md5=8d3dfa7f8b225ec64232afd60b447f26&pid=1-s2.0-S0950705124010815-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705124010815\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124010815","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

最近,人们对提取和注释网络上的表格越来越感兴趣。这项工作可以将文本数据转换成机器可读的格式,从而执行各种人工智能任务,例如语义搜索和数据集扩展。语义表解释(STI)是对表中元素进行注释的过程。本文探讨了语义表解释,解决了知识图谱(KG)背景下实体检索和实体消歧的难题。它介绍了LamAPI(一种基于字符串/类型过滤的信息检索系统)和s-elBat(一种将启发式方法和基于ML的方法相结合的实体消歧技术)。通过应用在该领域获得的专有技术,并从我们以前的科技创新方法和最新技术中提取算法、技术和组件,我们创建了一个新的平台,能够注释任何表格数据,并确保高质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature/vector entity retrieval and disambiguation techniques to create a supervised and unsupervised semantic table interpretation approach

Recently, there has been an increasing interest in extracting and annotating tables on the Web. This activity allows the transformation of textual data into machine-readable formats to enable the execution of various artificial intelligence tasks, e.g., semantic search and dataset extension. Semantic Table Interpretation (STI) is the process of annotating elements in a table. The paper explores Semantic Table Interpretation, addressing the challenges of Entity Retrieval and Entity Disambiguation in the context of Knowledge Graphs (KGs). It introduces LamAPI, an Information Retrieval system with string/type-based filtering and s-elBat, an Entity Disambiguation technique that combines heuristic and ML-based approaches. By applying the acquired know-how in the field and extracting algorithms, techniques and components from our previous STI approaches and the state of the art, we have created a new platform capable of annotating any tabular data, ensuring a high level of quality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
期刊最新文献
Local Metric NER: A new paradigm for named entity recognition from a multi-label perspective CRATI: Contrastive representation-based multimodal sound event localization and detection ALDANER: Active Learning based Data Augmentation for Named Entity Recognition Robust deadline-aware network function parallelization framework under demand uncertainty PMCN: Parallax-motion collaboration network for stereo video dehazing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1