改进高含水量软粘土上的真空-荷载预压结合电渗固结技术

IF 4.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Geotextiles and Geomembranes Pub Date : 2024-09-12 DOI:10.1016/j.geotexmem.2024.09.004
Lei Zhang , Haihui Jin , Yandong Lv , Binhui Wang , Zhongze Jia , Fangyu Hou , Chen Fang , Liyan Wang , Dandan Jin
{"title":"改进高含水量软粘土上的真空-荷载预压结合电渗固结技术","authors":"Lei Zhang ,&nbsp;Haihui Jin ,&nbsp;Yandong Lv ,&nbsp;Binhui Wang ,&nbsp;Zhongze Jia ,&nbsp;Fangyu Hou ,&nbsp;Chen Fang ,&nbsp;Liyan Wang ,&nbsp;Dandan Jin","doi":"10.1016/j.geotexmem.2024.09.004","DOIUrl":null,"url":null,"abstract":"<div><p>This study conducted laboratory tests on soft clayey soils to investigate the effectiveness of the combinations of vacuum-surcharge preloading and electro-osmotic treatment (EOC-VPM-SPM). To minimize the loss of vacuum pressure and mitigate clogging of the drainage system during the consolidation process, two improved methods were developed by optimizing technical characteristics and geometric layout of drainage boards. In the EOC-Alternate VPM-SPM method, alternate vacuum pressure was incorporated using two drainage boards with different lengths in the VPM system, combined with EOC to improve consolidation efficiency. In the multiple-electrodes EOC-VPM-SPM method, a new design of multiple drainage boards in a square tube layout fabricated through 3D printing was employed to provide efficient connections of the consolidation system. Furthermore, electrokinetic geosynthetics (EKG) was utilized as the cathode in the EOC system to minimize erosion and passivation of electrodes for the enhancement in consolidation efficiency. The properties of tested soils were analyzed to evaluate the feasibility of the improved methods. Test results indicated that the consolidation effects were significantly improved, with effectively mitigated clogging of the drainage system. Compared to the traditional method, the water content of the tested soil was reduced through the improved methods, resulting in increased uniformity of strength distribution.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 1","pages":"Pages 41-54"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvements in vacuum-surcharge preloading combined with electro-osmotic consolidation on soft clayey soil with high water content\",\"authors\":\"Lei Zhang ,&nbsp;Haihui Jin ,&nbsp;Yandong Lv ,&nbsp;Binhui Wang ,&nbsp;Zhongze Jia ,&nbsp;Fangyu Hou ,&nbsp;Chen Fang ,&nbsp;Liyan Wang ,&nbsp;Dandan Jin\",\"doi\":\"10.1016/j.geotexmem.2024.09.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study conducted laboratory tests on soft clayey soils to investigate the effectiveness of the combinations of vacuum-surcharge preloading and electro-osmotic treatment (EOC-VPM-SPM). To minimize the loss of vacuum pressure and mitigate clogging of the drainage system during the consolidation process, two improved methods were developed by optimizing technical characteristics and geometric layout of drainage boards. In the EOC-Alternate VPM-SPM method, alternate vacuum pressure was incorporated using two drainage boards with different lengths in the VPM system, combined with EOC to improve consolidation efficiency. In the multiple-electrodes EOC-VPM-SPM method, a new design of multiple drainage boards in a square tube layout fabricated through 3D printing was employed to provide efficient connections of the consolidation system. Furthermore, electrokinetic geosynthetics (EKG) was utilized as the cathode in the EOC system to minimize erosion and passivation of electrodes for the enhancement in consolidation efficiency. The properties of tested soils were analyzed to evaluate the feasibility of the improved methods. Test results indicated that the consolidation effects were significantly improved, with effectively mitigated clogging of the drainage system. Compared to the traditional method, the water content of the tested soil was reduced through the improved methods, resulting in increased uniformity of strength distribution.</p></div>\",\"PeriodicalId\":55096,\"journal\":{\"name\":\"Geotextiles and Geomembranes\",\"volume\":\"53 1\",\"pages\":\"Pages 41-54\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotextiles and Geomembranes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266114424001067\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114424001067","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究对软粘土进行了实验室测试,以研究真空-充填预压和电渗处理(EOC-VPM-SPM)组合的有效性。为了在固结过程中尽量减少真空压力的损失和减轻排水系统的堵塞,通过优化排水板的技术特性和几何布局,开发了两种改进方法。在 EOC-Alternate VPM-SPM 方法中,在 VPM 系统中使用两块不同长度的排水板,结合 EOC 来交替使用真空压力,以提高固结效率。在多电极 EOC-VPM-SPM 方法中,采用了通过三维打印制造的方管布局多排水板的新设计,以提供固结系统的高效连接。此外,电动力土工合成材料(EKG)被用作 EOC 系统的阴极,以最大限度地减少电极的侵蚀和钝化,从而提高固结效率。对测试土壤的特性进行了分析,以评估改进方法的可行性。测试结果表明,固结效果明显改善,有效缓解了排水系统的堵塞。与传统方法相比,改进方法降低了测试土壤的含水量,从而提高了强度分布的均匀性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improvements in vacuum-surcharge preloading combined with electro-osmotic consolidation on soft clayey soil with high water content

This study conducted laboratory tests on soft clayey soils to investigate the effectiveness of the combinations of vacuum-surcharge preloading and electro-osmotic treatment (EOC-VPM-SPM). To minimize the loss of vacuum pressure and mitigate clogging of the drainage system during the consolidation process, two improved methods were developed by optimizing technical characteristics and geometric layout of drainage boards. In the EOC-Alternate VPM-SPM method, alternate vacuum pressure was incorporated using two drainage boards with different lengths in the VPM system, combined with EOC to improve consolidation efficiency. In the multiple-electrodes EOC-VPM-SPM method, a new design of multiple drainage boards in a square tube layout fabricated through 3D printing was employed to provide efficient connections of the consolidation system. Furthermore, electrokinetic geosynthetics (EKG) was utilized as the cathode in the EOC system to minimize erosion and passivation of electrodes for the enhancement in consolidation efficiency. The properties of tested soils were analyzed to evaluate the feasibility of the improved methods. Test results indicated that the consolidation effects were significantly improved, with effectively mitigated clogging of the drainage system. Compared to the traditional method, the water content of the tested soil was reduced through the improved methods, resulting in increased uniformity of strength distribution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geotextiles and Geomembranes
Geotextiles and Geomembranes 地学-地球科学综合
CiteScore
9.50
自引率
21.20%
发文量
111
审稿时长
59 days
期刊介绍: The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident. Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.
期刊最新文献
Influence of perforation characteristics and geotextile envelopes on the drain pipe An approximate solution of consolidation for double-layered ground with different smear radii by vertical drains Long-term performance of polyethylene geomembranes to contain brine Field behavior of a GRS bridge approach retaining wall on highly compressible foundation soils A model for predicting permeability of geotextile envelope for subsurface drainage after combined clogging in arid areas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1