Jiayv Jing , Xu Yang , Ling Ding , Hainian Wang , Jinchao Guan , Yue Hou , Sherif M. El-Badawy
{"title":"自适应二维三维图像融合,实现像素级路面裂缝自动检测","authors":"Jiayv Jing , Xu Yang , Ling Ding , Hainian Wang , Jinchao Guan , Yue Hou , Sherif M. El-Badawy","doi":"10.1016/j.autcon.2024.105756","DOIUrl":null,"url":null,"abstract":"<div><p>Current 2D and 3D image-based crack detection methods in transportation infrastructure often struggle with noise robustness and feature diversity. To overcome these challenges, the paper use CSF-CrackNet, a self-adaptive 2D<img>3D image fusion model utilizes channel and spatial modules for automated pavement crack segmentation. CSF-CrackNet consists of four parts: feature enhanced and field sensing (FEFS) module, channel module, spatial module, and semantic segmentation module. A multi-feature image dataset was established using a vehicle-mounted 3D imaging system, including color images, depth images, and color-depth overlapped images. Results show that the mean intersection over union (mIOU) of most models under the CSF-CrackNet framework can be increased to above 80 %. Compared with original RGB and depth images, the average mIOU increases with image fusion by 10 % and 5 %, respectively. The ablation experiment and weight significance analysis further demonstrate that CSF-CrackNet can significantly improve semantic segmentation performance by balancing information between 2D and 3D images.</p></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-adaptive 2D3D image fusion for automated pixel-level pavement crack detection\",\"authors\":\"Jiayv Jing , Xu Yang , Ling Ding , Hainian Wang , Jinchao Guan , Yue Hou , Sherif M. El-Badawy\",\"doi\":\"10.1016/j.autcon.2024.105756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Current 2D and 3D image-based crack detection methods in transportation infrastructure often struggle with noise robustness and feature diversity. To overcome these challenges, the paper use CSF-CrackNet, a self-adaptive 2D<img>3D image fusion model utilizes channel and spatial modules for automated pavement crack segmentation. CSF-CrackNet consists of four parts: feature enhanced and field sensing (FEFS) module, channel module, spatial module, and semantic segmentation module. A multi-feature image dataset was established using a vehicle-mounted 3D imaging system, including color images, depth images, and color-depth overlapped images. Results show that the mean intersection over union (mIOU) of most models under the CSF-CrackNet framework can be increased to above 80 %. Compared with original RGB and depth images, the average mIOU increases with image fusion by 10 % and 5 %, respectively. The ablation experiment and weight significance analysis further demonstrate that CSF-CrackNet can significantly improve semantic segmentation performance by balancing information between 2D and 3D images.</p></div>\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926580524004928\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580524004928","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Self-adaptive 2D3D image fusion for automated pixel-level pavement crack detection
Current 2D and 3D image-based crack detection methods in transportation infrastructure often struggle with noise robustness and feature diversity. To overcome these challenges, the paper use CSF-CrackNet, a self-adaptive 2D3D image fusion model utilizes channel and spatial modules for automated pavement crack segmentation. CSF-CrackNet consists of four parts: feature enhanced and field sensing (FEFS) module, channel module, spatial module, and semantic segmentation module. A multi-feature image dataset was established using a vehicle-mounted 3D imaging system, including color images, depth images, and color-depth overlapped images. Results show that the mean intersection over union (mIOU) of most models under the CSF-CrackNet framework can be increased to above 80 %. Compared with original RGB and depth images, the average mIOU increases with image fusion by 10 % and 5 %, respectively. The ablation experiment and weight significance analysis further demonstrate that CSF-CrackNet can significantly improve semantic segmentation performance by balancing information between 2D and 3D images.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.