利用视觉曼巴和卷积网络增强像素级裂缝分割能力

IF 9.6 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Automation in Construction Pub Date : 2024-09-11 DOI:10.1016/j.autcon.2024.105770
Chengjia Han , Handuo Yang , Yaowen Yang
{"title":"利用视觉曼巴和卷积网络增强像素级裂缝分割能力","authors":"Chengjia Han ,&nbsp;Handuo Yang ,&nbsp;Yaowen Yang","doi":"10.1016/j.autcon.2024.105770","DOIUrl":null,"url":null,"abstract":"<div><p>Computer vision-based semantic segmentation methods are currently the most widely used for automated detection of structural cracks in buildings and pavements. However, these methods face persistent challenges in detecting fine cracks with small widths and in distinguishing cracks from background stains. This paper addresses these issues by introducing MambaCrackNet, a new network architecture for pixel-level crack segmentation. MambaCrackNet incorporates residual visual Mamba blocks and integrates visual Mamba and convolutional neural network-based segmentation techniques. This approach effectively enhances the detection of fine cracks, reduces misdetections of background stains, and remains robust to variations in patch size and training sample sizes, making it highly practical for engineering applications. On two open access crack datasets, MambaCrackNet outperformed mainstream crack segmentation models, achieving MIoU scores of 0.8939 and 0.8560 and F1-scores of 0.8817 and 0.8412.</p></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing pixel-level crack segmentation with visual mamba and convolutional networks\",\"authors\":\"Chengjia Han ,&nbsp;Handuo Yang ,&nbsp;Yaowen Yang\",\"doi\":\"10.1016/j.autcon.2024.105770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Computer vision-based semantic segmentation methods are currently the most widely used for automated detection of structural cracks in buildings and pavements. However, these methods face persistent challenges in detecting fine cracks with small widths and in distinguishing cracks from background stains. This paper addresses these issues by introducing MambaCrackNet, a new network architecture for pixel-level crack segmentation. MambaCrackNet incorporates residual visual Mamba blocks and integrates visual Mamba and convolutional neural network-based segmentation techniques. This approach effectively enhances the detection of fine cracks, reduces misdetections of background stains, and remains robust to variations in patch size and training sample sizes, making it highly practical for engineering applications. On two open access crack datasets, MambaCrackNet outperformed mainstream crack segmentation models, achieving MIoU scores of 0.8939 and 0.8560 and F1-scores of 0.8817 and 0.8412.</p></div>\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926580524005065\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580524005065","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目前,基于计算机视觉的语义分割方法被最广泛地用于建筑物和路面结构裂缝的自动检测。然而,这些方法在检测宽度较小的细微裂缝和区分裂缝与背景污渍方面一直面临挑战。本文通过引入 MambaCrackNet 来解决这些问题,MambaCrackNet 是一种用于像素级裂缝分割的新型网络架构。MambaCrackNet 融合了残余视觉 Mamba 块,并集成了视觉 Mamba 和基于卷积神经网络的分割技术。这种方法有效增强了对细微裂纹的检测,减少了对背景污点的误检测,并对斑块大小和训练样本大小的变化保持稳健,因此在工程应用中非常实用。在两个公开的裂缝数据集上,MambaCrackNet 的表现优于主流裂缝分割模型,MIoU 分数分别为 0.8939 和 0.8560,F1 分数分别为 0.8817 和 0.8412。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing pixel-level crack segmentation with visual mamba and convolutional networks

Computer vision-based semantic segmentation methods are currently the most widely used for automated detection of structural cracks in buildings and pavements. However, these methods face persistent challenges in detecting fine cracks with small widths and in distinguishing cracks from background stains. This paper addresses these issues by introducing MambaCrackNet, a new network architecture for pixel-level crack segmentation. MambaCrackNet incorporates residual visual Mamba blocks and integrates visual Mamba and convolutional neural network-based segmentation techniques. This approach effectively enhances the detection of fine cracks, reduces misdetections of background stains, and remains robust to variations in patch size and training sample sizes, making it highly practical for engineering applications. On two open access crack datasets, MambaCrackNet outperformed mainstream crack segmentation models, achieving MIoU scores of 0.8939 and 0.8560 and F1-scores of 0.8817 and 0.8412.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
期刊最新文献
Robust optimization model for traceable procurement of construction materials considering contract claims Editorial Board Rutting extraction from vehicle-borne laser point clouds Self-supervised monocular depth estimation on construction sites in low-light conditions and dynamic scenes Automated reinforcement of 3D-printed engineered cementitious composite beams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1