{"title":"低剂量计算机断层扫描感知图像质量评估","authors":"","doi":"10.1016/j.media.2024.103343","DOIUrl":null,"url":null,"abstract":"<div><p>In computed tomography (CT) imaging, optimizing the balance between radiation dose and image quality is crucial due to the potentially harmful effects of radiation on patients. Although subjective assessments by radiologists are considered the gold standard in medical imaging, these evaluations can be time-consuming and costly. Thus, objective methods, such as the peak signal-to-noise ratio and structural similarity index measure, are often employed as alternatives. However, these metrics, initially developed for natural images, may not fully encapsulate the radiologists’ assessment process. Consequently, interest in developing deep learning-based image quality assessment (IQA) methods that more closely align with radiologists’ perceptions is growing. A significant barrier to this development has been the absence of open-source datasets and benchmark models specific to CT IQA. Addressing these challenges, we organized the Low-dose Computed Tomography Perceptual Image Quality Assessment Challenge in conjunction with the Medical Image Computing and Computer Assisted Intervention 2023. This event introduced the first open-source CT IQA dataset, consisting of 1,000 CT images of various quality, annotated with radiologists’ assessment scores. As a benchmark, this challenge offers a comprehensive analysis of six submitted methods, providing valuable insight into their performance. This paper presents a summary of these methods and insights. This challenge underscores the potential for developing no-reference IQA methods that could exceed the capabilities of full-reference IQA methods, making a significant contribution to the research community with this novel dataset. The dataset is accessible at <span><span>https://zenodo.org/records/7833096</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1361841524002688/pdfft?md5=4b571dbdaaece38e1cd24203b6bc5445&pid=1-s2.0-S1361841524002688-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Low-dose computed tomography perceptual image quality assessment\",\"authors\":\"\",\"doi\":\"10.1016/j.media.2024.103343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In computed tomography (CT) imaging, optimizing the balance between radiation dose and image quality is crucial due to the potentially harmful effects of radiation on patients. Although subjective assessments by radiologists are considered the gold standard in medical imaging, these evaluations can be time-consuming and costly. Thus, objective methods, such as the peak signal-to-noise ratio and structural similarity index measure, are often employed as alternatives. However, these metrics, initially developed for natural images, may not fully encapsulate the radiologists’ assessment process. Consequently, interest in developing deep learning-based image quality assessment (IQA) methods that more closely align with radiologists’ perceptions is growing. A significant barrier to this development has been the absence of open-source datasets and benchmark models specific to CT IQA. Addressing these challenges, we organized the Low-dose Computed Tomography Perceptual Image Quality Assessment Challenge in conjunction with the Medical Image Computing and Computer Assisted Intervention 2023. This event introduced the first open-source CT IQA dataset, consisting of 1,000 CT images of various quality, annotated with radiologists’ assessment scores. As a benchmark, this challenge offers a comprehensive analysis of six submitted methods, providing valuable insight into their performance. This paper presents a summary of these methods and insights. This challenge underscores the potential for developing no-reference IQA methods that could exceed the capabilities of full-reference IQA methods, making a significant contribution to the research community with this novel dataset. The dataset is accessible at <span><span>https://zenodo.org/records/7833096</span><svg><path></path></svg></span>.</p></div>\",\"PeriodicalId\":18328,\"journal\":{\"name\":\"Medical image analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1361841524002688/pdfft?md5=4b571dbdaaece38e1cd24203b6bc5445&pid=1-s2.0-S1361841524002688-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1361841524002688\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841524002688","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
In computed tomography (CT) imaging, optimizing the balance between radiation dose and image quality is crucial due to the potentially harmful effects of radiation on patients. Although subjective assessments by radiologists are considered the gold standard in medical imaging, these evaluations can be time-consuming and costly. Thus, objective methods, such as the peak signal-to-noise ratio and structural similarity index measure, are often employed as alternatives. However, these metrics, initially developed for natural images, may not fully encapsulate the radiologists’ assessment process. Consequently, interest in developing deep learning-based image quality assessment (IQA) methods that more closely align with radiologists’ perceptions is growing. A significant barrier to this development has been the absence of open-source datasets and benchmark models specific to CT IQA. Addressing these challenges, we organized the Low-dose Computed Tomography Perceptual Image Quality Assessment Challenge in conjunction with the Medical Image Computing and Computer Assisted Intervention 2023. This event introduced the first open-source CT IQA dataset, consisting of 1,000 CT images of various quality, annotated with radiologists’ assessment scores. As a benchmark, this challenge offers a comprehensive analysis of six submitted methods, providing valuable insight into their performance. This paper presents a summary of these methods and insights. This challenge underscores the potential for developing no-reference IQA methods that could exceed the capabilities of full-reference IQA methods, making a significant contribution to the research community with this novel dataset. The dataset is accessible at https://zenodo.org/records/7833096.
期刊介绍:
Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.