Hyosang Ju;Jisang Park;Donghun Lee;Min Jang;Juho Lee;Sang-Hyo Kim
{"title":"论改进奇偶校验极性编码的设计","authors":"Hyosang Ju;Jisang Park;Donghun Lee;Min Jang;Juho Lee;Sang-Hyo Kim","doi":"10.1109/OJCOMS.2024.3447042","DOIUrl":null,"url":null,"abstract":"In this paper, a new design of concatenated polar codes is proposed. By concatenating an outer code with polar codes, the distance spectrum can be improved, leading to enhanced decoding performance of vanilla polar codes. In the 5G New Radio standard, both cyclic redundancy check precoding and systematic single-parity-check precoding schemes are adopted and this combination provides stable decoding performance over a wide range of coding parameters. We focus on the design of single-paritycheck precoded polar codes. For the special systematic pre-coding scheme, code construction depends solely on the selection of information and parity bits from the source bits. Since the conventional parity bit selection criteria can draw weaknesses for some coding parameters, we develop new criteria that enhance the protection of weak source bits under the successive cancelation decoding. The simulation results demonstrate that the proposed design consistently outperforms the conventional one across a wide range of coding parameters. The improvement is more pronounced in short-length codes.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10643177","citationCount":"0","resultStr":"{\"title\":\"On Improving the Design of Parity-Check Polar Codes\",\"authors\":\"Hyosang Ju;Jisang Park;Donghun Lee;Min Jang;Juho Lee;Sang-Hyo Kim\",\"doi\":\"10.1109/OJCOMS.2024.3447042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new design of concatenated polar codes is proposed. By concatenating an outer code with polar codes, the distance spectrum can be improved, leading to enhanced decoding performance of vanilla polar codes. In the 5G New Radio standard, both cyclic redundancy check precoding and systematic single-parity-check precoding schemes are adopted and this combination provides stable decoding performance over a wide range of coding parameters. We focus on the design of single-paritycheck precoded polar codes. For the special systematic pre-coding scheme, code construction depends solely on the selection of information and parity bits from the source bits. Since the conventional parity bit selection criteria can draw weaknesses for some coding parameters, we develop new criteria that enhance the protection of weak source bits under the successive cancelation decoding. The simulation results demonstrate that the proposed design consistently outperforms the conventional one across a wide range of coding parameters. The improvement is more pronounced in short-length codes.\",\"PeriodicalId\":33803,\"journal\":{\"name\":\"IEEE Open Journal of the Communications Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10643177\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10643177/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10643177/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
On Improving the Design of Parity-Check Polar Codes
In this paper, a new design of concatenated polar codes is proposed. By concatenating an outer code with polar codes, the distance spectrum can be improved, leading to enhanced decoding performance of vanilla polar codes. In the 5G New Radio standard, both cyclic redundancy check precoding and systematic single-parity-check precoding schemes are adopted and this combination provides stable decoding performance over a wide range of coding parameters. We focus on the design of single-paritycheck precoded polar codes. For the special systematic pre-coding scheme, code construction depends solely on the selection of information and parity bits from the source bits. Since the conventional parity bit selection criteria can draw weaknesses for some coding parameters, we develop new criteria that enhance the protection of weak source bits under the successive cancelation decoding. The simulation results demonstrate that the proposed design consistently outperforms the conventional one across a wide range of coding parameters. The improvement is more pronounced in short-length codes.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.