通过电力运输系统中的电动汽车通勤和充电实现最大程度恶意软件传播的攻击设计

IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Systems Journal Pub Date : 2024-08-29 DOI:10.1109/JSYST.2024.3446231
Sushil Poudel;Mahmoud Abouyoussef;J. Eileen Baugh;Muhammad Ismail
{"title":"通过电力运输系统中的电动汽车通勤和充电实现最大程度恶意软件传播的攻击设计","authors":"Sushil Poudel;Mahmoud Abouyoussef;J. Eileen Baugh;Muhammad Ismail","doi":"10.1109/JSYST.2024.3446231","DOIUrl":null,"url":null,"abstract":"The growing number of electric vehicles (EVs) on the roads led to a wide deployment of public EV charging stations (EVCSs). Recent reports revealed that both EVs and EVCSs are targets of cyber-attacks. In this context, a malware attack on vehicle-to-grid (V2G) communications increases the risk of malware spread among EVs and public EVCSs. However, the existing literature lacks practical studies on malware spread in power-transportation systems. Hence, this article demonstrates malicious traffic injection and proposes strategies to identify target EVCSs that can maximize physical malware spread within power-transportation systems. We first show the feasibility of injecting malicious traffic into the front-end V2G communication. Next, we establish a model that reflects the logical connectivity among the EVCSs, based on a realistic framework for large-scale EV commute and charge simulation. The logical connectivity is then translated into a malware spread probability, which we use to design an optimal attack strategy that identifies the locations of target EVCSs that maximize the malware spread. We compare malware spread due to random, cluster-based, and optimal attack strategies in both urban (Nashville) and rural (Cookeville) U.S. cities. Our results reveal that optimal attack strategies can accelerate malware spread by \n<inline-formula><tex-math>$10\\%$</tex-math></inline-formula>\n–\n<inline-formula><tex-math>$33\\%$</tex-math></inline-formula>\n.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"18 3","pages":"1809-1820"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attack Design for Maximum Malware Spread Through EVs Commute and Charge in Power-Transportation Systems\",\"authors\":\"Sushil Poudel;Mahmoud Abouyoussef;J. Eileen Baugh;Muhammad Ismail\",\"doi\":\"10.1109/JSYST.2024.3446231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing number of electric vehicles (EVs) on the roads led to a wide deployment of public EV charging stations (EVCSs). Recent reports revealed that both EVs and EVCSs are targets of cyber-attacks. In this context, a malware attack on vehicle-to-grid (V2G) communications increases the risk of malware spread among EVs and public EVCSs. However, the existing literature lacks practical studies on malware spread in power-transportation systems. Hence, this article demonstrates malicious traffic injection and proposes strategies to identify target EVCSs that can maximize physical malware spread within power-transportation systems. We first show the feasibility of injecting malicious traffic into the front-end V2G communication. Next, we establish a model that reflects the logical connectivity among the EVCSs, based on a realistic framework for large-scale EV commute and charge simulation. The logical connectivity is then translated into a malware spread probability, which we use to design an optimal attack strategy that identifies the locations of target EVCSs that maximize the malware spread. We compare malware spread due to random, cluster-based, and optimal attack strategies in both urban (Nashville) and rural (Cookeville) U.S. cities. Our results reveal that optimal attack strategies can accelerate malware spread by \\n<inline-formula><tex-math>$10\\\\%$</tex-math></inline-formula>\\n–\\n<inline-formula><tex-math>$33\\\\%$</tex-math></inline-formula>\\n.\",\"PeriodicalId\":55017,\"journal\":{\"name\":\"IEEE Systems Journal\",\"volume\":\"18 3\",\"pages\":\"1809-1820\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Systems Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10659100/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Systems Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10659100/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

道路上的电动汽车(EV)数量不断增加,导致公共电动汽车充电站(EVCS)的广泛部署。最近的报告显示,电动汽车和电动汽车充电站都是网络攻击的目标。在这种情况下,针对车联网(V2G)通信的恶意软件攻击增加了恶意软件在电动汽车和公共 EVCS 之间传播的风险。然而,现有文献缺乏对电力运输系统中恶意软件传播的实际研究。因此,本文展示了恶意流量注入,并提出了识别目标 EVCS 的策略,以最大限度地提高恶意软件在电力传输系统中的物理传播。我们首先展示了在前端 V2G 通信中注入恶意流量的可行性。接下来,我们基于大规模电动汽车通勤和充电模拟的现实框架,建立了一个反映 EVCS 之间逻辑连接的模型。然后,逻辑连通性被转化为恶意软件传播概率,我们利用该概率设计出一种最佳攻击策略,确定目标 EVCS 的位置,使恶意软件传播最大化。我们在美国城市(纳什维尔)和乡村(库克维尔)比较了随机攻击策略、集群攻击策略和最优攻击策略导致的恶意软件传播。我们的研究结果表明,最优攻击策略可以将恶意软件的传播速度提高 10%$-33%$ 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Attack Design for Maximum Malware Spread Through EVs Commute and Charge in Power-Transportation Systems
The growing number of electric vehicles (EVs) on the roads led to a wide deployment of public EV charging stations (EVCSs). Recent reports revealed that both EVs and EVCSs are targets of cyber-attacks. In this context, a malware attack on vehicle-to-grid (V2G) communications increases the risk of malware spread among EVs and public EVCSs. However, the existing literature lacks practical studies on malware spread in power-transportation systems. Hence, this article demonstrates malicious traffic injection and proposes strategies to identify target EVCSs that can maximize physical malware spread within power-transportation systems. We first show the feasibility of injecting malicious traffic into the front-end V2G communication. Next, we establish a model that reflects the logical connectivity among the EVCSs, based on a realistic framework for large-scale EV commute and charge simulation. The logical connectivity is then translated into a malware spread probability, which we use to design an optimal attack strategy that identifies the locations of target EVCSs that maximize the malware spread. We compare malware spread due to random, cluster-based, and optimal attack strategies in both urban (Nashville) and rural (Cookeville) U.S. cities. Our results reveal that optimal attack strategies can accelerate malware spread by $10\%$$33\%$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Systems Journal
IEEE Systems Journal 工程技术-电信学
CiteScore
9.80
自引率
6.80%
发文量
572
审稿时长
4.9 months
期刊介绍: This publication provides a systems-level, focused forum for application-oriented manuscripts that address complex systems and system-of-systems of national and global significance. It intends to encourage and facilitate cooperation and interaction among IEEE Societies with systems-level and systems engineering interest, and to attract non-IEEE contributors and readers from around the globe. Our IEEE Systems Council job is to address issues in new ways that are not solvable in the domains of the existing IEEE or other societies or global organizations. These problems do not fit within traditional hierarchical boundaries. For example, disaster response such as that triggered by Hurricane Katrina, tsunamis, or current volcanic eruptions is not solvable by pure engineering solutions. We need to think about changing and enlarging the paradigm to include systems issues.
期刊最新文献
2024 Index IEEE Systems Journal Vol. 18 Front Cover Editorial Table of Contents IEEE Systems Council Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1