Alice Dejoux, Qianqian Zhu, Christelle Ganneau, Odile Richard-Le Goff, Ophélie Godon, Julien Lemaitre, Francis Relouzat, François Huetz, Aurélien Sokal, Alexis Vandenberghe, Cyprien Pecalvel, Lise Hunault, Thomas Derenne, Caitlin M. Gillis, Bruno Iannascoli, Yidan Wang, Thierry Rose, Christel Mertens, Pascale Nicaise-Roland, NASA Study Group, Patrick England, Matthieu Mahévas, Luc de Chaisemartin, Roger Le Grand, Hélène Letscher, Frederick Saul, Cédric Pissis, Ahmed Haouz, Laurent L. Reber, Pascal Chappert, Friederike Jönsson, Didier G. Ebo, Gaël A. Millot, Sylvie Bay, Sylvie Chollet-Martin, Aurélie Gouel-Chéron, Pierre Bruhns
{"title":"罗库溴铵特异性抗体会导致围手术期过敏性休克,但在临床前模型中也能起到逆转作用","authors":"Alice Dejoux, Qianqian Zhu, Christelle Ganneau, Odile Richard-Le Goff, Ophélie Godon, Julien Lemaitre, Francis Relouzat, François Huetz, Aurélien Sokal, Alexis Vandenberghe, Cyprien Pecalvel, Lise Hunault, Thomas Derenne, Caitlin M. Gillis, Bruno Iannascoli, Yidan Wang, Thierry Rose, Christel Mertens, Pascale Nicaise-Roland, NASA Study Group, Patrick England, Matthieu Mahévas, Luc de Chaisemartin, Roger Le Grand, Hélène Letscher, Frederick Saul, Cédric Pissis, Ahmed Haouz, Laurent L. Reber, Pascal Chappert, Friederike Jönsson, Didier G. Ebo, Gaël A. Millot, Sylvie Bay, Sylvie Chollet-Martin, Aurélie Gouel-Chéron, Pierre Bruhns","doi":"10.1126/scitranslmed.ado4463","DOIUrl":null,"url":null,"abstract":"<div >Neuromuscular blocking agents (NMBAs) relax skeletal muscles to facilitate surgeries and ease intubation but can lead to adverse reactions, including complications because of postoperative residual neuromuscular blockade (rNMB) and, in rare cases, anaphylaxis. Both adverse reactions vary between types of NMBAs, with rocuronium, a widely used nondepolarizing NMBA, inducing one of the longest rNMB durations and highest anaphylaxis incidences. rNMB induced by rocuronium can be reversed by the synthetic γ-cyclodextrin sugammadex. However, in rare cases, sugammadex can provoke anaphylaxis. Thus, additional therapeutic options are needed. Rocuronium-induced anaphylaxis is proposed to rely on preexisting rocuronium-binding antibodies. To understand the pathogenesis of rocuronium-induced anaphylaxis and to identify potential therapeutics, we investigated the memory B cell antibody repertoire of patients with suspected hypersensitivity to rocuronium. We identified polyclonal antibody repertoires with a high diversity among V(D)J genes without evidence of clonal groups. When recombinantly expressed, these antibodies demonstrated specificity and low affinity for rocuronium without cross-reactivity for other NMBAs. Moreover, when these antibodies were expressed as human immunoglobulin E (IgE), they triggered human mast cell activation and passive systemic anaphylaxis in transgenic mice, although their affinities were insufficient to serve as reversal agents. Rocuronium-specific, high-affinity antibodies were thus isolated from rocuronium-immunized mice. The highest-affinity antibody was able to reverse rocuronium-induced neuromuscular blockade in nonhuman primates with kinetics comparable to that of sugammadex. Together, these data support the hypothesis that antibodies cause anaphylactic reactions to rocuronium and pave the way for improved diagnostics and neuromuscular blockade reversal agents.</div>","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":"16 764","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rocuronium-specific antibodies drive perioperative anaphylaxis but can also function as reversal agents in preclinical models\",\"authors\":\"Alice Dejoux, Qianqian Zhu, Christelle Ganneau, Odile Richard-Le Goff, Ophélie Godon, Julien Lemaitre, Francis Relouzat, François Huetz, Aurélien Sokal, Alexis Vandenberghe, Cyprien Pecalvel, Lise Hunault, Thomas Derenne, Caitlin M. Gillis, Bruno Iannascoli, Yidan Wang, Thierry Rose, Christel Mertens, Pascale Nicaise-Roland, NASA Study Group, Patrick England, Matthieu Mahévas, Luc de Chaisemartin, Roger Le Grand, Hélène Letscher, Frederick Saul, Cédric Pissis, Ahmed Haouz, Laurent L. Reber, Pascal Chappert, Friederike Jönsson, Didier G. Ebo, Gaël A. Millot, Sylvie Bay, Sylvie Chollet-Martin, Aurélie Gouel-Chéron, Pierre Bruhns\",\"doi\":\"10.1126/scitranslmed.ado4463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Neuromuscular blocking agents (NMBAs) relax skeletal muscles to facilitate surgeries and ease intubation but can lead to adverse reactions, including complications because of postoperative residual neuromuscular blockade (rNMB) and, in rare cases, anaphylaxis. Both adverse reactions vary between types of NMBAs, with rocuronium, a widely used nondepolarizing NMBA, inducing one of the longest rNMB durations and highest anaphylaxis incidences. rNMB induced by rocuronium can be reversed by the synthetic γ-cyclodextrin sugammadex. However, in rare cases, sugammadex can provoke anaphylaxis. Thus, additional therapeutic options are needed. Rocuronium-induced anaphylaxis is proposed to rely on preexisting rocuronium-binding antibodies. To understand the pathogenesis of rocuronium-induced anaphylaxis and to identify potential therapeutics, we investigated the memory B cell antibody repertoire of patients with suspected hypersensitivity to rocuronium. We identified polyclonal antibody repertoires with a high diversity among V(D)J genes without evidence of clonal groups. When recombinantly expressed, these antibodies demonstrated specificity and low affinity for rocuronium without cross-reactivity for other NMBAs. Moreover, when these antibodies were expressed as human immunoglobulin E (IgE), they triggered human mast cell activation and passive systemic anaphylaxis in transgenic mice, although their affinities were insufficient to serve as reversal agents. Rocuronium-specific, high-affinity antibodies were thus isolated from rocuronium-immunized mice. The highest-affinity antibody was able to reverse rocuronium-induced neuromuscular blockade in nonhuman primates with kinetics comparable to that of sugammadex. Together, these data support the hypothesis that antibodies cause anaphylactic reactions to rocuronium and pave the way for improved diagnostics and neuromuscular blockade reversal agents.</div>\",\"PeriodicalId\":21580,\"journal\":{\"name\":\"Science Translational Medicine\",\"volume\":\"16 764\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Translational Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/scitranslmed.ado4463\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.science.org/doi/10.1126/scitranslmed.ado4463","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Rocuronium-specific antibodies drive perioperative anaphylaxis but can also function as reversal agents in preclinical models
Neuromuscular blocking agents (NMBAs) relax skeletal muscles to facilitate surgeries and ease intubation but can lead to adverse reactions, including complications because of postoperative residual neuromuscular blockade (rNMB) and, in rare cases, anaphylaxis. Both adverse reactions vary between types of NMBAs, with rocuronium, a widely used nondepolarizing NMBA, inducing one of the longest rNMB durations and highest anaphylaxis incidences. rNMB induced by rocuronium can be reversed by the synthetic γ-cyclodextrin sugammadex. However, in rare cases, sugammadex can provoke anaphylaxis. Thus, additional therapeutic options are needed. Rocuronium-induced anaphylaxis is proposed to rely on preexisting rocuronium-binding antibodies. To understand the pathogenesis of rocuronium-induced anaphylaxis and to identify potential therapeutics, we investigated the memory B cell antibody repertoire of patients with suspected hypersensitivity to rocuronium. We identified polyclonal antibody repertoires with a high diversity among V(D)J genes without evidence of clonal groups. When recombinantly expressed, these antibodies demonstrated specificity and low affinity for rocuronium without cross-reactivity for other NMBAs. Moreover, when these antibodies were expressed as human immunoglobulin E (IgE), they triggered human mast cell activation and passive systemic anaphylaxis in transgenic mice, although their affinities were insufficient to serve as reversal agents. Rocuronium-specific, high-affinity antibodies were thus isolated from rocuronium-immunized mice. The highest-affinity antibody was able to reverse rocuronium-induced neuromuscular blockade in nonhuman primates with kinetics comparable to that of sugammadex. Together, these data support the hypothesis that antibodies cause anaphylactic reactions to rocuronium and pave the way for improved diagnostics and neuromuscular blockade reversal agents.
期刊介绍:
Science Translational Medicine is an online journal that focuses on publishing research at the intersection of science, engineering, and medicine. The goal of the journal is to promote human health by providing a platform for researchers from various disciplines to communicate their latest advancements in biomedical, translational, and clinical research.
The journal aims to address the slow translation of scientific knowledge into effective treatments and health measures. It publishes articles that fill the knowledge gaps between preclinical research and medical applications, with a focus on accelerating the translation of knowledge into new ways of preventing, diagnosing, and treating human diseases.
The scope of Science Translational Medicine includes various areas such as cardiovascular disease, immunology/vaccines, metabolism/diabetes/obesity, neuroscience/neurology/psychiatry, cancer, infectious diseases, policy, behavior, bioengineering, chemical genomics/drug discovery, imaging, applied physical sciences, medical nanotechnology, drug delivery, biomarkers, gene therapy/regenerative medicine, toxicology and pharmacokinetics, data mining, cell culture, animal and human studies, medical informatics, and other interdisciplinary approaches to medicine.
The target audience of the journal includes researchers and management in academia, government, and the biotechnology and pharmaceutical industries. It is also relevant to physician scientists, regulators, policy makers, investors, business developers, and funding agencies.