来自竞争铁氧体阶次的超高机电响应

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Pub Date : 2024-09-11 DOI:10.1038/s41586-024-07917-9
Baichen Lin, Khuong Phuong Ong, Tiannan Yang, Qibin Zeng, Hui Kim Hui, Zhen Ye, Celine Sim, Zhihao Yen, Ping Yang, Yanxin Dou, Xiaolong Li, Xingyu Gao, Chee Kiang Ivan Tan, Zhi Shiuh Lim, Shengwei Zeng, Tiancheng Luo, Jinlong Xu, Xin Tong, Patrick Wen Feng Li, Minqin Ren, Kaiyang Zeng, Chengliang Sun, Seeram Ramakrishna, Mark B. H. Breese, Chris Boothroyd, Chengkuo Lee, David J. Singh, Yeng Ming Lam, Huajun Liu
{"title":"来自竞争铁氧体阶次的超高机电响应","authors":"Baichen Lin, Khuong Phuong Ong, Tiannan Yang, Qibin Zeng, Hui Kim Hui, Zhen Ye, Celine Sim, Zhihao Yen, Ping Yang, Yanxin Dou, Xiaolong Li, Xingyu Gao, Chee Kiang Ivan Tan, Zhi Shiuh Lim, Shengwei Zeng, Tiancheng Luo, Jinlong Xu, Xin Tong, Patrick Wen Feng Li, Minqin Ren, Kaiyang Zeng, Chengliang Sun, Seeram Ramakrishna, Mark B. H. Breese, Chris Boothroyd, Chengkuo Lee, David J. Singh, Yeng Ming Lam, Huajun Liu","doi":"10.1038/s41586-024-07917-9","DOIUrl":null,"url":null,"abstract":"Materials with electromechanical coupling are essential for transducers and acoustic devices as reversible converters between mechanical and electrical energy1–6. High electromechanical responses are typically found in materials with strong structural instabilities, conventionally achieved by two strategies—morphotropic phase boundaries7 and nanoscale structural heterogeneity8. Here we demonstrate a different strategy to accomplish ultrahigh electromechanical response by inducing extreme structural instability from competing antiferroelectric and ferroelectric orders. Guided by the phase diagram and theoretical calculations, we designed the coexistence of antiferroelectric orthorhombic and ferroelectric rhombohedral phases in sodium niobate thin films. These films show effective piezoelectric coefficients above 5,000 pm V−1 because of electric-field-induced antiferroelectric–ferroelectric phase transitions. Our results provide a general approach to design and exploit antiferroelectric materials for electromechanical devices. Ultrahigh electromechanical response is accomplished by inducing extreme structural instability from competing antiferroelectric and ferroelectric orders.","PeriodicalId":18787,"journal":{"name":"Nature","volume":null,"pages":null},"PeriodicalIF":50.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41586-024-07917-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Ultrahigh electromechanical response from competing ferroic orders\",\"authors\":\"Baichen Lin, Khuong Phuong Ong, Tiannan Yang, Qibin Zeng, Hui Kim Hui, Zhen Ye, Celine Sim, Zhihao Yen, Ping Yang, Yanxin Dou, Xiaolong Li, Xingyu Gao, Chee Kiang Ivan Tan, Zhi Shiuh Lim, Shengwei Zeng, Tiancheng Luo, Jinlong Xu, Xin Tong, Patrick Wen Feng Li, Minqin Ren, Kaiyang Zeng, Chengliang Sun, Seeram Ramakrishna, Mark B. H. Breese, Chris Boothroyd, Chengkuo Lee, David J. Singh, Yeng Ming Lam, Huajun Liu\",\"doi\":\"10.1038/s41586-024-07917-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Materials with electromechanical coupling are essential for transducers and acoustic devices as reversible converters between mechanical and electrical energy1–6. High electromechanical responses are typically found in materials with strong structural instabilities, conventionally achieved by two strategies—morphotropic phase boundaries7 and nanoscale structural heterogeneity8. Here we demonstrate a different strategy to accomplish ultrahigh electromechanical response by inducing extreme structural instability from competing antiferroelectric and ferroelectric orders. Guided by the phase diagram and theoretical calculations, we designed the coexistence of antiferroelectric orthorhombic and ferroelectric rhombohedral phases in sodium niobate thin films. These films show effective piezoelectric coefficients above 5,000 pm V−1 because of electric-field-induced antiferroelectric–ferroelectric phase transitions. Our results provide a general approach to design and exploit antiferroelectric materials for electromechanical devices. Ultrahigh electromechanical response is accomplished by inducing extreme structural instability from competing antiferroelectric and ferroelectric orders.\",\"PeriodicalId\":18787,\"journal\":{\"name\":\"Nature\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":50.5000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41586-024-07917-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.nature.com/articles/s41586-024-07917-9\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-024-07917-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

作为机械能和电能之间的可逆转换器,具有机电耦合功能的材料对于传感器和声学设备至关重要1,2,3,4,5,6。高机电响应通常出现在具有强结构不稳定性的材料中,传统上通过两种策略实现:各向同性相界7 和纳米级结构异质性8。在这里,我们展示了一种不同的策略,通过诱导反铁电和铁电阶竞争产生的极端结构不稳定性来实现超高机电响应。在相图和理论计算的指导下,我们在铌酸钠薄膜中设计了反铁电正方体相和铁电斜方体相的共存。由于电场诱导的反铁电-铁电相变,这些薄膜显示出高于 5,000 pm V-1 的有效压电系数。我们的研究结果为设计和利用反铁电材料制造机电设备提供了一种通用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ultrahigh electromechanical response from competing ferroic orders
Materials with electromechanical coupling are essential for transducers and acoustic devices as reversible converters between mechanical and electrical energy1–6. High electromechanical responses are typically found in materials with strong structural instabilities, conventionally achieved by two strategies—morphotropic phase boundaries7 and nanoscale structural heterogeneity8. Here we demonstrate a different strategy to accomplish ultrahigh electromechanical response by inducing extreme structural instability from competing antiferroelectric and ferroelectric orders. Guided by the phase diagram and theoretical calculations, we designed the coexistence of antiferroelectric orthorhombic and ferroelectric rhombohedral phases in sodium niobate thin films. These films show effective piezoelectric coefficients above 5,000 pm V−1 because of electric-field-induced antiferroelectric–ferroelectric phase transitions. Our results provide a general approach to design and exploit antiferroelectric materials for electromechanical devices. Ultrahigh electromechanical response is accomplished by inducing extreme structural instability from competing antiferroelectric and ferroelectric orders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
期刊最新文献
Why Mount Everest is the world’s tallest mountain AI to the rescue: how to enhance disaster early warnings with tech tools What harmful microbes are lurking in the world’s 7 billion tonnes of plastic waste? Essential vector-disease resource faces shutdown without funding US election has profound implications for science in Ukraine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1