高维基因与环境相互作用分析

IF 7.4 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Annual Review of Statistics and Its Application Pub Date : 2024-09-11 DOI:10.1146/annurev-statistics-112723-034315
Mengyun Wu, Yingmeng Li, Shuangge Ma
{"title":"高维基因与环境相互作用分析","authors":"Mengyun Wu, Yingmeng Li, Shuangge Ma","doi":"10.1146/annurev-statistics-112723-034315","DOIUrl":null,"url":null,"abstract":"Beyond the main genetic and environmental effects, gene–environment (G–E) interactions have been demonstrated to significantly contribute to the development and progression of complex diseases. Published analyses of G–E interactions have primarily used a supervised framework to model both low-dimensional environmental factors and high-dimensional genetic factors in relation to disease outcomes. In this article, we aim to provide a selective review of methodological developments in G–E interaction analysis from a statistical perspective. The three main families of techniques are hypothesis testing, variable selection, and dimension reduction, which lead to three general frameworks: testing-based, estimation-based, and prediction-based. Linear- and nonlinear-effects analysis, fixed- and random-effects analysis, marginal and joint analysis, and Bayesian and frequentist analysis are reviewed to facilitate the conduct of interaction analysis in a wide range of situations with various assumptions and objectives. Statistical properties, computations, applications, and future directions are also discussed.","PeriodicalId":48855,"journal":{"name":"Annual Review of Statistics and Its Application","volume":"28 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Dimensional Gene–Environment Interaction Analysis\",\"authors\":\"Mengyun Wu, Yingmeng Li, Shuangge Ma\",\"doi\":\"10.1146/annurev-statistics-112723-034315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Beyond the main genetic and environmental effects, gene–environment (G–E) interactions have been demonstrated to significantly contribute to the development and progression of complex diseases. Published analyses of G–E interactions have primarily used a supervised framework to model both low-dimensional environmental factors and high-dimensional genetic factors in relation to disease outcomes. In this article, we aim to provide a selective review of methodological developments in G–E interaction analysis from a statistical perspective. The three main families of techniques are hypothesis testing, variable selection, and dimension reduction, which lead to three general frameworks: testing-based, estimation-based, and prediction-based. Linear- and nonlinear-effects analysis, fixed- and random-effects analysis, marginal and joint analysis, and Bayesian and frequentist analysis are reviewed to facilitate the conduct of interaction analysis in a wide range of situations with various assumptions and objectives. Statistical properties, computations, applications, and future directions are also discussed.\",\"PeriodicalId\":48855,\"journal\":{\"name\":\"Annual Review of Statistics and Its Application\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Statistics and Its Application\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-statistics-112723-034315\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Statistics and Its Application","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1146/annurev-statistics-112723-034315","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

除了主要的遗传和环境影响外,基因-环境(G-E)相互作用已被证明对复杂疾病的发生和发展有重要作用。已发表的 G-E 相互作用分析主要采用监督框架,对与疾病结果相关的低维环境因素和高维遗传因素进行建模。在本文中,我们旨在从统计学的角度对 G-E 相互作用分析方法的发展进行选择性回顾。假设检验、变量选择和降维是三大主要技术系列,由此产生了三种通用框架:基于检验的、基于估计的和基于预测的。本书回顾了线性效应和非线性效应分析、固定效应和随机效应分析、边际分析和联合分析、贝叶斯分析和频数分析,以便在各种情况下根据不同的假设和目标进行交互作用分析。此外,还讨论了统计特性、计算、应用和未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-Dimensional Gene–Environment Interaction Analysis
Beyond the main genetic and environmental effects, gene–environment (G–E) interactions have been demonstrated to significantly contribute to the development and progression of complex diseases. Published analyses of G–E interactions have primarily used a supervised framework to model both low-dimensional environmental factors and high-dimensional genetic factors in relation to disease outcomes. In this article, we aim to provide a selective review of methodological developments in G–E interaction analysis from a statistical perspective. The three main families of techniques are hypothesis testing, variable selection, and dimension reduction, which lead to three general frameworks: testing-based, estimation-based, and prediction-based. Linear- and nonlinear-effects analysis, fixed- and random-effects analysis, marginal and joint analysis, and Bayesian and frequentist analysis are reviewed to facilitate the conduct of interaction analysis in a wide range of situations with various assumptions and objectives. Statistical properties, computations, applications, and future directions are also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Statistics and Its Application
Annual Review of Statistics and Its Application MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
13.40
自引率
1.30%
发文量
29
期刊介绍: The Annual Review of Statistics and Its Application publishes comprehensive review articles focusing on methodological advancements in statistics and the utilization of computational tools facilitating these advancements. It is abstracted and indexed in Scopus, Science Citation Index Expanded, and Inspec.
期刊最新文献
A Survey on Statistical Theory of Deep Learning: Approximation, Training Dynamics, and Generative Models Models and Rating Systems for Head-to-Head Competition A Review of Reinforcement Learning in Financial Applications Joint Modeling of Longitudinal and Survival Data Infectious Disease Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1