{"title":"带有 Zr(IV)、Hf(IV)和 Ce(IV)金属中心的 MOF-808 在苯甲醛与甲醇的缩醛反应中的催化评估","authors":"Yazmín Arellano, César Pazo, Vanesa Roa, Yoan Hidalgo-Rosa, Ximena Zarate, Jaime Llanos, Nestor Escalona and Eduardo Schott","doi":"10.1039/D4DT01959H","DOIUrl":null,"url":null,"abstract":"<p >In the context of climate change, it is of utmost importance to replace the use of fossil fuels as raw material in areas of industrial interest, for example, in the production of chemical inputs. In this context, a viable option is biomass, since by subjecting it to chemical processes such as pyrolysis, it is possible to obtain platform molecules that are the basis for the generation of value-added chemical products. Acetals are molecules obtained from biomass derivatives, which have various applications in cosmetic chemistry, in the pharmaceutical industry as intermediates or final compounds, food additives, among others. Different catalysts have been used in the acetalization reaction, including MOFs, which have the advantage of being porous materials with high surface area values. The large surface area translates into a greater number of catalytically active sites available for the reaction. Among the MOFs that have been used for this purpose is MOF-808, which is characterized by having a lower number of ligands attached to its metal cluster, therefore, it has a greater exposure of the metals that make up its structure. In this context, the work carried out studied the catalytic performance of MOF-808 when its Zr(<small>IV</small>) metal centers are replaced by Hf(<small>IV</small>) and Ce(<small>IV</small>) atoms in the acetalization reaction of benzaldehyde with methanol. The MOFs obtained by solvothermal synthesis were characterized by powder X-ray diffraction, N<small><sub>2</sub></small> adsorption and desorption, FT-IR spectroscopy, acid–base potentiometric titration, XPS and thermogravimetric analysis. The results of the catalysis indicate that the MOF with the best performance was MOF-808-Ce, which achieved conversions greater than 80% in a period of ten minutes. MOF-808-Ce exhibits a higher number of defects and therefore a higher availability of catalytic sites for the reaction to occur, which explains the better performance. Finally, the performance of MOF-808 in the acetalization of benzaldehyde with methanol was also supported by density functional theory (DFT) calculations.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dt/d4dt01959h?page=search","citationCount":"0","resultStr":"{\"title\":\"Catalytic evaluation of MOF-808 with metallic centers of Zr(iv), Hf(iv) and Ce(iv) in the acetalization of benzaldehyde with methanol†\",\"authors\":\"Yazmín Arellano, César Pazo, Vanesa Roa, Yoan Hidalgo-Rosa, Ximena Zarate, Jaime Llanos, Nestor Escalona and Eduardo Schott\",\"doi\":\"10.1039/D4DT01959H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In the context of climate change, it is of utmost importance to replace the use of fossil fuels as raw material in areas of industrial interest, for example, in the production of chemical inputs. In this context, a viable option is biomass, since by subjecting it to chemical processes such as pyrolysis, it is possible to obtain platform molecules that are the basis for the generation of value-added chemical products. Acetals are molecules obtained from biomass derivatives, which have various applications in cosmetic chemistry, in the pharmaceutical industry as intermediates or final compounds, food additives, among others. Different catalysts have been used in the acetalization reaction, including MOFs, which have the advantage of being porous materials with high surface area values. The large surface area translates into a greater number of catalytically active sites available for the reaction. Among the MOFs that have been used for this purpose is MOF-808, which is characterized by having a lower number of ligands attached to its metal cluster, therefore, it has a greater exposure of the metals that make up its structure. In this context, the work carried out studied the catalytic performance of MOF-808 when its Zr(<small>IV</small>) metal centers are replaced by Hf(<small>IV</small>) and Ce(<small>IV</small>) atoms in the acetalization reaction of benzaldehyde with methanol. The MOFs obtained by solvothermal synthesis were characterized by powder X-ray diffraction, N<small><sub>2</sub></small> adsorption and desorption, FT-IR spectroscopy, acid–base potentiometric titration, XPS and thermogravimetric analysis. The results of the catalysis indicate that the MOF with the best performance was MOF-808-Ce, which achieved conversions greater than 80% in a period of ten minutes. MOF-808-Ce exhibits a higher number of defects and therefore a higher availability of catalytic sites for the reaction to occur, which explains the better performance. Finally, the performance of MOF-808 in the acetalization of benzaldehyde with methanol was also supported by density functional theory (DFT) calculations.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/dt/d4dt01959h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/dt/d4dt01959h\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/dt/d4dt01959h","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Catalytic evaluation of MOF-808 with metallic centers of Zr(iv), Hf(iv) and Ce(iv) in the acetalization of benzaldehyde with methanol†
In the context of climate change, it is of utmost importance to replace the use of fossil fuels as raw material in areas of industrial interest, for example, in the production of chemical inputs. In this context, a viable option is biomass, since by subjecting it to chemical processes such as pyrolysis, it is possible to obtain platform molecules that are the basis for the generation of value-added chemical products. Acetals are molecules obtained from biomass derivatives, which have various applications in cosmetic chemistry, in the pharmaceutical industry as intermediates or final compounds, food additives, among others. Different catalysts have been used in the acetalization reaction, including MOFs, which have the advantage of being porous materials with high surface area values. The large surface area translates into a greater number of catalytically active sites available for the reaction. Among the MOFs that have been used for this purpose is MOF-808, which is characterized by having a lower number of ligands attached to its metal cluster, therefore, it has a greater exposure of the metals that make up its structure. In this context, the work carried out studied the catalytic performance of MOF-808 when its Zr(IV) metal centers are replaced by Hf(IV) and Ce(IV) atoms in the acetalization reaction of benzaldehyde with methanol. The MOFs obtained by solvothermal synthesis were characterized by powder X-ray diffraction, N2 adsorption and desorption, FT-IR spectroscopy, acid–base potentiometric titration, XPS and thermogravimetric analysis. The results of the catalysis indicate that the MOF with the best performance was MOF-808-Ce, which achieved conversions greater than 80% in a period of ten minutes. MOF-808-Ce exhibits a higher number of defects and therefore a higher availability of catalytic sites for the reaction to occur, which explains the better performance. Finally, the performance of MOF-808 in the acetalization of benzaldehyde with methanol was also supported by density functional theory (DFT) calculations.